Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean

Abstract In the article, we prove that the function r ↦ E ( r ) / S 9 / 2 − p , p ( 1 , r ′ ) $r\mapsto \mathcal{E}(r)/S_{9/2-p, p}(1, r')$ is strictly increasing on ( 0 , 1 ) $(0, 1)$ for p ≤ 7 / 4 $p\leq7/4$ and strictly decreasing on ( 0 , 1 ) $(0, 1)$ for p ∈ [ 2 , 9 / 4 ] $p\in [2, 9/4]$ ,...

Full description

Bibliographic Details
Main Authors: Zhen-Hang Yang, Yu-Ming Chu, Wen Zhang
Format: Article
Language:English
Published: SpringerOpen 2016-07-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1113-1
_version_ 1817980406657449984
author Zhen-Hang Yang
Yu-Ming Chu
Wen Zhang
author_facet Zhen-Hang Yang
Yu-Ming Chu
Wen Zhang
author_sort Zhen-Hang Yang
collection DOAJ
description Abstract In the article, we prove that the function r ↦ E ( r ) / S 9 / 2 − p , p ( 1 , r ′ ) $r\mapsto \mathcal{E}(r)/S_{9/2-p, p}(1, r')$ is strictly increasing on ( 0 , 1 ) $(0, 1)$ for p ≤ 7 / 4 $p\leq7/4$ and strictly decreasing on ( 0 , 1 ) $(0, 1)$ for p ∈ [ 2 , 9 / 4 ] $p\in [2, 9/4]$ , where r ′ = 1 − r 2 $r'=\sqrt{1-r^{2}}$ , E ( r ) = ∫ 0 π / 2 1 − r 2 sin 2 ( t ) d t $\mathcal{E}(r)=\int_{0}^{\pi/2}\sqrt{1-r^{2}\sin^{2}(t)}\,dt$ is the complete elliptic integral of the second kind, and S p , q ( a , b ) = [ q ( a p − b p ) / ( p ( a q − b q ) ) ] 1 / ( p − q ) $S_{p, q}(a, b)=[q(a^{p}-b^{p})/(p(a^{q}-b^{q}))]^{1/(p-q)}$ is the Stolarsky mean of a and b. As applications, we present several new bounds for E ( r ) $\mathcal{E}(r)$ , the Toader mean T ( a , b ) = ( 2 / π ) ∫ 0 π / 2 a 2 cos 2 t + b 2 sin 2 t d t ${T}(a,b)=(2/\pi)\int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2}t+b^{2}\sin^{2}t}\,dt$ , and the Toader-Qi mean TQ ( a , b ) = ( 2 / π ) ∫ 0 π / 2 a cos 2 θ b sin 2 θ d θ $\operatorname{TQ}(a,b)=(2/\pi)\int_{0}^{\pi/2}a^{\cos^{2}\theta}b^{\sin^{2}\theta }d\theta$ .
first_indexed 2024-04-13T22:53:32Z
format Article
id doaj.art-f140b5c408e0431bbbf862c7d44588c2
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-04-13T22:53:32Z
publishDate 2016-07-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-f140b5c408e0431bbbf862c7d44588c22022-12-22T02:26:07ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-07-012016111010.1186/s13660-016-1113-1Monotonicity of the ratio for the complete elliptic integral and Stolarsky meanZhen-Hang Yang0Yu-Ming Chu1Wen Zhang2School of Mathematics and Computation Sciences, Hunan City UniversitySchool of Mathematics and Computation Sciences, Hunan City UniversityAlbert Einstein College of Medicine, Yeshiva UniversityAbstract In the article, we prove that the function r ↦ E ( r ) / S 9 / 2 − p , p ( 1 , r ′ ) $r\mapsto \mathcal{E}(r)/S_{9/2-p, p}(1, r')$ is strictly increasing on ( 0 , 1 ) $(0, 1)$ for p ≤ 7 / 4 $p\leq7/4$ and strictly decreasing on ( 0 , 1 ) $(0, 1)$ for p ∈ [ 2 , 9 / 4 ] $p\in [2, 9/4]$ , where r ′ = 1 − r 2 $r'=\sqrt{1-r^{2}}$ , E ( r ) = ∫ 0 π / 2 1 − r 2 sin 2 ( t ) d t $\mathcal{E}(r)=\int_{0}^{\pi/2}\sqrt{1-r^{2}\sin^{2}(t)}\,dt$ is the complete elliptic integral of the second kind, and S p , q ( a , b ) = [ q ( a p − b p ) / ( p ( a q − b q ) ) ] 1 / ( p − q ) $S_{p, q}(a, b)=[q(a^{p}-b^{p})/(p(a^{q}-b^{q}))]^{1/(p-q)}$ is the Stolarsky mean of a and b. As applications, we present several new bounds for E ( r ) $\mathcal{E}(r)$ , the Toader mean T ( a , b ) = ( 2 / π ) ∫ 0 π / 2 a 2 cos 2 t + b 2 sin 2 t d t ${T}(a,b)=(2/\pi)\int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2}t+b^{2}\sin^{2}t}\,dt$ , and the Toader-Qi mean TQ ( a , b ) = ( 2 / π ) ∫ 0 π / 2 a cos 2 θ b sin 2 θ d θ $\operatorname{TQ}(a,b)=(2/\pi)\int_{0}^{\pi/2}a^{\cos^{2}\theta}b^{\sin^{2}\theta }d\theta$ .http://link.springer.com/article/10.1186/s13660-016-1113-1complete elliptic integralStolarsky meanToader meanToader-Qi mean
spellingShingle Zhen-Hang Yang
Yu-Ming Chu
Wen Zhang
Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
Journal of Inequalities and Applications
complete elliptic integral
Stolarsky mean
Toader mean
Toader-Qi mean
title Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
title_full Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
title_fullStr Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
title_full_unstemmed Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
title_short Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean
title_sort monotonicity of the ratio for the complete elliptic integral and stolarsky mean
topic complete elliptic integral
Stolarsky mean
Toader mean
Toader-Qi mean
url http://link.springer.com/article/10.1186/s13660-016-1113-1
work_keys_str_mv AT zhenhangyang monotonicityoftheratioforthecompleteellipticintegralandstolarskymean
AT yumingchu monotonicityoftheratioforthecompleteellipticintegralandstolarskymean
AT wenzhang monotonicityoftheratioforthecompleteellipticintegralandstolarskymean