Bayesian Matrix Learning by Principle Eigenvector for Completing Missing Medical Data

Since machine learning is applied in medicine, more and more medical data for prediction has been produced by monitoring patients, such as symptoms information of diabetes. This paper establishes a frame called the Diabetes Medication Bayes Matrix (DTBM) to structure the relationship between the sym...

Full description

Bibliographic Details
Main Authors: Mandi Liu, Lei Zhang, Qi Yue
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/5/3314
Description
Summary:Since machine learning is applied in medicine, more and more medical data for prediction has been produced by monitoring patients, such as symptoms information of diabetes. This paper establishes a frame called the Diabetes Medication Bayes Matrix (DTBM) to structure the relationship between the symptoms of diabetes and the medication regimens for machine learning. The eigenvector of the DTBM is the stable distribution of different symptoms and medication regimens. Based on the DTBM, this paper proposes a machine-learning algorithm for completing missing medical data, which provides a theoretical basis for the prediction of a Bayesian matrix with missing medical information. The experimental results show the rationality and applicability of the given algorithms.
ISSN:2076-3417