Machine learning techniques for monitoring the sludge profile in a secondary settler tank
Abstract The aim of this paper is to evaluate and compare the performance of two machine learning methods, Gaussian process regression (GPR) and Gaussian mixture models (GMMs), as two possible methods for monitoring the sludge profile in a secondary settler tank (SST). In GPR, the prediction of the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-07-01
|
Series: | Applied Water Science |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/s13201-019-1018-5 |