Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms

Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum ge...

Full description

Bibliographic Details
Main Authors: Karoline Klein, Gilbert Georg Klamminger, Laurent Mombaerts, Finn Jelke, Isabel Fernandes Arroteia, Rédouane Slimani, Giulia Mirizzi, Andreas Husch, Katrin B. M. Frauenknecht, Michel Mittelbronn, Frank Hertel, Felix B. Kleine Borgmann
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/29/5/979
_version_ 1797264191255478272
author Karoline Klein
Gilbert Georg Klamminger
Laurent Mombaerts
Finn Jelke
Isabel Fernandes Arroteia
Rédouane Slimani
Giulia Mirizzi
Andreas Husch
Katrin B. M. Frauenknecht
Michel Mittelbronn
Frank Hertel
Felix B. Kleine Borgmann
author_facet Karoline Klein
Gilbert Georg Klamminger
Laurent Mombaerts
Finn Jelke
Isabel Fernandes Arroteia
Rédouane Slimani
Giulia Mirizzi
Andreas Husch
Katrin B. M. Frauenknecht
Michel Mittelbronn
Frank Hertel
Felix B. Kleine Borgmann
author_sort Karoline Klein
collection DOAJ
description Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas—vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%—but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control.
first_indexed 2024-04-25T00:24:58Z
format Article
id doaj.art-f15a9d3c5f564a2a942e2fdef5709b92
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-04-25T00:24:58Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-f15a9d3c5f564a2a942e2fdef5709b922024-03-12T16:50:38ZengMDPI AGMolecules1420-30492024-02-0129597910.3390/molecules29050979Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning AlgorithmsKaroline Klein0Gilbert Georg Klamminger1Laurent Mombaerts2Finn Jelke3Isabel Fernandes Arroteia4Rédouane Slimani5Giulia Mirizzi6Andreas Husch7Katrin B. M. Frauenknecht8Michel Mittelbronn9Frank Hertel10Felix B. Kleine Borgmann11Faculty of Medicine, Saarland University (USAAR), 66424 Homburg, GermanyDepartment of General and Special Pathology, Saarland University (USAAR), 66424 Homburg, GermanyLuxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg (UL), 4362 Esch-sur-Alzette, LuxembourgNational Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, LuxembourgNational Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, LuxembourgDoctoral School in Science and Engineering (DSSE), University of Luxembourg (UL), 4362 Esch-sur-Alzette, LuxembourgFaculty of Medicine, Saarland University (USAAR), 66424 Homburg, GermanyNational Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, LuxembourgNational Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, LuxembourgNational Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, LuxembourgFaculty of Medicine, Saarland University (USAAR), 66424 Homburg, GermanyFaculty of Medicine, Saarland University (USAAR), 66424 Homburg, GermanyUnderstanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas—vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%—but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control.https://www.mdpi.com/1420-3049/29/5/979Raman spectroscopyvibrational spectroscopyglioblastomabrain tumorheterogeneitymachine learning
spellingShingle Karoline Klein
Gilbert Georg Klamminger
Laurent Mombaerts
Finn Jelke
Isabel Fernandes Arroteia
Rédouane Slimani
Giulia Mirizzi
Andreas Husch
Katrin B. M. Frauenknecht
Michel Mittelbronn
Frank Hertel
Felix B. Kleine Borgmann
Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms
Molecules
Raman spectroscopy
vibrational spectroscopy
glioblastoma
brain tumor
heterogeneity
machine learning
title Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms
title_full Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms
title_fullStr Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms
title_full_unstemmed Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms
title_short Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms
title_sort computational assessment of spectral heterogeneity within fresh glioblastoma tissue using raman spectroscopy and machine learning algorithms
topic Raman spectroscopy
vibrational spectroscopy
glioblastoma
brain tumor
heterogeneity
machine learning
url https://www.mdpi.com/1420-3049/29/5/979
work_keys_str_mv AT karolineklein computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT gilbertgeorgklamminger computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT laurentmombaerts computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT finnjelke computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT isabelfernandesarroteia computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT redouaneslimani computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT giuliamirizzi computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT andreashusch computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT katrinbmfrauenknecht computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT michelmittelbronn computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT frankhertel computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms
AT felixbkleineborgmann computationalassessmentofspectralheterogeneitywithinfreshglioblastomatissueusingramanspectroscopyandmachinelearningalgorithms