Quantization-Based Adaptive Deep Image Compression Using Semantic Information
Deep image coding (DIC) for hybrid application contexts has recently attracted significant research interest because of its potential to support both human and machine visual tasks. Since the regions of interest (ROI) are different for different application contexts, it is important to design an ada...
Päätekijät: | Zhongyue Lei, Xuemin Hong, Jianghong Shi, Minxian Su, Chaoheng Lin, Wei Xia |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
IEEE
2023-01-01
|
Sarja: | IEEE Access |
Aiheet: | |
Linkit: | https://ieeexplore.ieee.org/document/10290903/ |
Samankaltaisia teoksia
-
cXR+ Voxel-Based Semantic Compression for Networked Immersion
Tekijä: Sifat Rezwan, et al.
Julkaistu: (2023-01-01) -
Semantic Information Integration in the Large: Adaptability, Extensibility, and Scalability of the Context Mediation Approach
Tekijä: Gannon, Thomas, et al.
Julkaistu: (2005) -
Adaptive Vector Quantization for Lossy Compression of Image Sequences
Tekijä: Raffaele Pizzolante, et al.
Julkaistu: (2017-05-01) -
Semantic-Based Dynamic Service Adaptation in Context-Aware Mobile Cloud Learning
Tekijä: Muhamad S., et al.
Julkaistu: (2022-09-01) -
Context-Adaptive Inverse Quantization for Inter-Frame Coding
Tekijä: Kang Liu, et al.
Julkaistu: (2021-01-01)