Quantization-Based Adaptive Deep Image Compression Using Semantic Information
Deep image coding (DIC) for hybrid application contexts has recently attracted significant research interest because of its potential to support both human and machine visual tasks. Since the regions of interest (ROI) are different for different application contexts, it is important to design an ada...
Auteurs principaux: | Zhongyue Lei, Xuemin Hong, Jianghong Shi, Minxian Su, Chaoheng Lin, Wei Xia |
---|---|
Format: | Article |
Langue: | English |
Publié: |
IEEE
2023-01-01
|
Collection: | IEEE Access |
Sujets: | |
Accès en ligne: | https://ieeexplore.ieee.org/document/10290903/ |
Documents similaires
-
cXR+ Voxel-Based Semantic Compression for Networked Immersion
par: Sifat Rezwan, et autres
Publié: (2023-01-01) -
Semantic Information Integration in the Large: Adaptability, Extensibility, and Scalability of the Context Mediation Approach
par: Gannon, Thomas, et autres
Publié: (2005) -
Adaptive Vector Quantization for Lossy Compression of Image Sequences
par: Raffaele Pizzolante, et autres
Publié: (2017-05-01) -
Semantic-Based Dynamic Service Adaptation in Context-Aware Mobile Cloud Learning
par: Muhamad S., et autres
Publié: (2022-09-01) -
Context-Adaptive Inverse Quantization for Inter-Frame Coding
par: Kang Liu, et autres
Publié: (2021-01-01)