Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine

For the last decade, Gaussian process regression (GPR) proved to be a competitive machine learning regression algorithm for Earth observation applications, with attractive unique properties such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be a proficient ti...

Full description

Bibliographic Details
Main Authors: Luca Pipia, Eatidal Amin, Santiago Belda, Matías Salinero-Delgado, Jochem Verrelst
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/3/403
_version_ 1827598324410089472
author Luca Pipia
Eatidal Amin
Santiago Belda
Matías Salinero-Delgado
Jochem Verrelst
author_facet Luca Pipia
Eatidal Amin
Santiago Belda
Matías Salinero-Delgado
Jochem Verrelst
author_sort Luca Pipia
collection DOAJ
description For the last decade, Gaussian process regression (GPR) proved to be a competitive machine learning regression algorithm for Earth observation applications, with attractive unique properties such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be a proficient time series processor to fill up gaps in optical imagery, typically due to cloud cover. This makes GPR perfectly suited for large-scale spatiotemporal processing of satellite imageries into cloud-free products of biophysical variables. With the advent of the Google Earth Engine (GEE) cloud platform, new opportunities emerged to process local-to-planetary scale satellite data using advanced machine learning techniques and convert them into gap-filled vegetation properties products. However, GPR is not yet part of the GEE ecosystem. To circumvent this limitation, this work proposes a general adaptation of GPR formulation to parallel processing framework and its integration into GEE. To demonstrate the functioning and utility of the developed workflow, a GPR model predicting green leaf area index (LAI<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>G</mi></msub></semantics></math></inline-formula>) from Sentinel-2 imagery was imported. Although by running this GPR model into GEE any corner of the world can be mapped into LAI<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>G</mi></msub></semantics></math></inline-formula> at a resolution of 20 m, here we show some demonstration cases over western Europe with zoom-ins over Spain. Thanks to the computational power of GEE, the mapping takes place on-the-fly. Additionally, a GPR-based gap filling strategy based on pre-optimized kernel hyperparameters is also put forward for the generation of multi-orbit cloud-free LAI<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>G</mi></msub></semantics></math></inline-formula> maps with an unprecedented level of detail, and the extraction of regularly-sampled LAI<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>G</mi></msub></semantics></math></inline-formula> time series at a pixel level. The ability to plugin a locally-trained GPR model into the GEE framework and its instant processing opens up a new paradigm of remote sensing image processing.
first_indexed 2024-03-09T03:47:56Z
format Article
id doaj.art-f1620e30fda5453f89673585752f5d27
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T03:47:56Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-f1620e30fda5453f89673585752f5d272023-12-03T14:31:48ZengMDPI AGRemote Sensing2072-42922021-01-0113340310.3390/rs13030403Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth EngineLuca Pipia0Eatidal Amin1Santiago Belda2Matías Salinero-Delgado3Jochem Verrelst4Institut Cartogràfic i Geològic de Catalunya (ICGC), Parc de Montjüic, 08038 Barcelona, SpainImage Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, 46980 Valencia, SpainImage Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, 46980 Valencia, SpainImage Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, 46980 Valencia, SpainImage Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, 46980 Valencia, SpainFor the last decade, Gaussian process regression (GPR) proved to be a competitive machine learning regression algorithm for Earth observation applications, with attractive unique properties such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be a proficient time series processor to fill up gaps in optical imagery, typically due to cloud cover. This makes GPR perfectly suited for large-scale spatiotemporal processing of satellite imageries into cloud-free products of biophysical variables. With the advent of the Google Earth Engine (GEE) cloud platform, new opportunities emerged to process local-to-planetary scale satellite data using advanced machine learning techniques and convert them into gap-filled vegetation properties products. However, GPR is not yet part of the GEE ecosystem. To circumvent this limitation, this work proposes a general adaptation of GPR formulation to parallel processing framework and its integration into GEE. To demonstrate the functioning and utility of the developed workflow, a GPR model predicting green leaf area index (LAI<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>G</mi></msub></semantics></math></inline-formula>) from Sentinel-2 imagery was imported. Although by running this GPR model into GEE any corner of the world can be mapped into LAI<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>G</mi></msub></semantics></math></inline-formula> at a resolution of 20 m, here we show some demonstration cases over western Europe with zoom-ins over Spain. Thanks to the computational power of GEE, the mapping takes place on-the-fly. Additionally, a GPR-based gap filling strategy based on pre-optimized kernel hyperparameters is also put forward for the generation of multi-orbit cloud-free LAI<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>G</mi></msub></semantics></math></inline-formula> maps with an unprecedented level of detail, and the extraction of regularly-sampled LAI<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>G</mi></msub></semantics></math></inline-formula> time series at a pixel level. The ability to plugin a locally-trained GPR model into the GEE framework and its instant processing opens up a new paradigm of remote sensing image processing.https://www.mdpi.com/2072-4292/13/3/403Google Earth Engine (GEE)Gaussian process regression (GPR)machine learningSentinel-2gap fillingleaf area index (LAI)
spellingShingle Luca Pipia
Eatidal Amin
Santiago Belda
Matías Salinero-Delgado
Jochem Verrelst
Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine
Remote Sensing
Google Earth Engine (GEE)
Gaussian process regression (GPR)
machine learning
Sentinel-2
gap filling
leaf area index (LAI)
title Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine
title_full Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine
title_fullStr Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine
title_full_unstemmed Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine
title_short Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine
title_sort green lai mapping and cloud gap filling using gaussian process regression in google earth engine
topic Google Earth Engine (GEE)
Gaussian process regression (GPR)
machine learning
Sentinel-2
gap filling
leaf area index (LAI)
url https://www.mdpi.com/2072-4292/13/3/403
work_keys_str_mv AT lucapipia greenlaimappingandcloudgapfillingusinggaussianprocessregressioningoogleearthengine
AT eatidalamin greenlaimappingandcloudgapfillingusinggaussianprocessregressioningoogleearthengine
AT santiagobelda greenlaimappingandcloudgapfillingusinggaussianprocessregressioningoogleearthengine
AT matiassalinerodelgado greenlaimappingandcloudgapfillingusinggaussianprocessregressioningoogleearthengine
AT jochemverrelst greenlaimappingandcloudgapfillingusinggaussianprocessregressioningoogleearthengine