Realizing quasi-monochromatic switchable thermal emission from electro-optically induced topological phase transitions
Abstract Explorations into the photonic analogs of topological materials have garnered significant research interest due to their application potential. Particularly in planar systems, the prospects of engendering extinguishable topological states can have wide-ranging implications. With an objectiv...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-05-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-022-11410-6 |
_version_ | 1811338742020964352 |
---|---|
author | Nitish Kumar Gupta Sapireddy Srinivasu Anjani Kumar Tiwari Harshawardhan Wanare S. Anantha Ramakrishna |
author_facet | Nitish Kumar Gupta Sapireddy Srinivasu Anjani Kumar Tiwari Harshawardhan Wanare S. Anantha Ramakrishna |
author_sort | Nitish Kumar Gupta |
collection | DOAJ |
description | Abstract Explorations into the photonic analogs of topological materials have garnered significant research interest due to their application potential. Particularly in planar systems, the prospects of engendering extinguishable topological states can have wide-ranging implications. With an objective of employing these concepts for thermal emission engineering, here, we design and numerically investigate a quasi-monochromatic highly directional mid-infrared source elicited from inversion symmetry-protected topological interface states. Notably, by relying on the architecture of electro-optic effect-induced topological phase transitions, we introduce the possibility of ultrafast switching of thermal radiation. These reversible phase transitions, being free from carrier transport are inherently fast and evoke thermal emission modulation with a modulation depth upto 0.99. Specifically, our platform exhibits a near-perfect extinguishable spectral emission peak at $$4~\mu$$ 4 μ m with a quality factor of over 18500, displaying negligible parasitic emissions. Furthermore, the optimized interface state manifests itself for only one of the polarization modes, resulting in polarized emission under resonance conditions. To establish a methodical approach to parameter optimization, we also model our platform as a leaky mode resonator using the framework of temporal coupled-mode theory. We believe, our findings can provide a way forward in establishing complete control over the optical characteristics of the infrared thermal emitters. |
first_indexed | 2024-04-13T18:15:38Z |
format | Article |
id | doaj.art-f1677ff80a1b4dfcbe7363c139df9f53 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-04-13T18:15:38Z |
publishDate | 2022-05-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-f1677ff80a1b4dfcbe7363c139df9f532022-12-22T02:35:41ZengNature PortfolioScientific Reports2045-23222022-05-0112111010.1038/s41598-022-11410-6Realizing quasi-monochromatic switchable thermal emission from electro-optically induced topological phase transitionsNitish Kumar Gupta0Sapireddy Srinivasu1Anjani Kumar Tiwari2Harshawardhan Wanare3S. Anantha Ramakrishna4Centre for Lasers & Photonics, Indian Institute of Technology KanpurCentre for Lasers & Photonics, Indian Institute of Technology KanpurDepartment of Physics, Indian Institute of Technology RoorkeeCentre for Lasers & Photonics, Indian Institute of Technology KanpurDepartment of Physics, Indian Institute of Technology KanpurAbstract Explorations into the photonic analogs of topological materials have garnered significant research interest due to their application potential. Particularly in planar systems, the prospects of engendering extinguishable topological states can have wide-ranging implications. With an objective of employing these concepts for thermal emission engineering, here, we design and numerically investigate a quasi-monochromatic highly directional mid-infrared source elicited from inversion symmetry-protected topological interface states. Notably, by relying on the architecture of electro-optic effect-induced topological phase transitions, we introduce the possibility of ultrafast switching of thermal radiation. These reversible phase transitions, being free from carrier transport are inherently fast and evoke thermal emission modulation with a modulation depth upto 0.99. Specifically, our platform exhibits a near-perfect extinguishable spectral emission peak at $$4~\mu$$ 4 μ m with a quality factor of over 18500, displaying negligible parasitic emissions. Furthermore, the optimized interface state manifests itself for only one of the polarization modes, resulting in polarized emission under resonance conditions. To establish a methodical approach to parameter optimization, we also model our platform as a leaky mode resonator using the framework of temporal coupled-mode theory. We believe, our findings can provide a way forward in establishing complete control over the optical characteristics of the infrared thermal emitters.https://doi.org/10.1038/s41598-022-11410-6 |
spellingShingle | Nitish Kumar Gupta Sapireddy Srinivasu Anjani Kumar Tiwari Harshawardhan Wanare S. Anantha Ramakrishna Realizing quasi-monochromatic switchable thermal emission from electro-optically induced topological phase transitions Scientific Reports |
title | Realizing quasi-monochromatic switchable thermal emission from electro-optically induced topological phase transitions |
title_full | Realizing quasi-monochromatic switchable thermal emission from electro-optically induced topological phase transitions |
title_fullStr | Realizing quasi-monochromatic switchable thermal emission from electro-optically induced topological phase transitions |
title_full_unstemmed | Realizing quasi-monochromatic switchable thermal emission from electro-optically induced topological phase transitions |
title_short | Realizing quasi-monochromatic switchable thermal emission from electro-optically induced topological phase transitions |
title_sort | realizing quasi monochromatic switchable thermal emission from electro optically induced topological phase transitions |
url | https://doi.org/10.1038/s41598-022-11410-6 |
work_keys_str_mv | AT nitishkumargupta realizingquasimonochromaticswitchablethermalemissionfromelectroopticallyinducedtopologicalphasetransitions AT sapireddysrinivasu realizingquasimonochromaticswitchablethermalemissionfromelectroopticallyinducedtopologicalphasetransitions AT anjanikumartiwari realizingquasimonochromaticswitchablethermalemissionfromelectroopticallyinducedtopologicalphasetransitions AT harshawardhanwanare realizingquasimonochromaticswitchablethermalemissionfromelectroopticallyinducedtopologicalphasetransitions AT sanantharamakrishna realizingquasimonochromaticswitchablethermalemissionfromelectroopticallyinducedtopologicalphasetransitions |