Inequalities for Laguerre functions

<p/> <p>The main published inequality for Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i1.gif"/></inline-formula> seems to be for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i2.gif"/&g...

Full description

Bibliographic Details
Main Author: Love ER
Format: Article
Language:English
Published: SpringerOpen 1997-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/1/936095
_version_ 1818387623636369408
author Love ER
author_facet Love ER
author_sort Love ER
collection DOAJ
description <p/> <p>The main published inequality for Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i1.gif"/></inline-formula> seems to be for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i2.gif"/></inline-formula> only; it is [2: 10.18(3)]: <inline-formula><graphic file="1029-242X-1997-936095-i3.gif"/></inline-formula>This paper presents several inequalities for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i4.gif"/></inline-formula> and Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i5.gif"/></inline-formula>, most of which do not seem to be in the existing literature. The corresponding inequalities for confluent hypergeometric functions are noted.</p> <p>For our work on expansions in series of Laguerre functions, M.N. Hunter and I needed an inequality for <inline-formula><graphic file="1029-242X-1997-936095-i6.gif"/></inline-formula> when re <inline-formula><graphic file="1029-242X-1997-936095-i7.gif"/></inline-formula> and re <inline-formula><graphic file="1029-242X-1997-936095-i8.gif"/></inline-formula> is large. The only extensions of the above inequality that we could obtain had multiples of <inline-formula><graphic file="1029-242X-1997-936095-i9.gif"/></inline-formula> on the right hand side instead of <inline-formula><graphic file="1029-242X-1997-936095-i10.gif"/></inline-formula>. This paper goes on to show that this is inevitable for non-integral <inline-formula><graphic file="1029-242X-1997-936095-i11.gif"/></inline-formula>, in that <inline-formula><graphic file="1029-242X-1997-936095-i12.gif"/></inline-formula> can exceed a multiple of <inline-formula><graphic file="1029-242X-1997-936095-i13.gif"/></inline-formula> for every fixed <inline-formula><graphic file="1029-242X-1997-936095-i14.gif"/></inline-formula> if <inline-formula><graphic file="1029-242X-1997-936095-i15.gif"/></inline-formula> is sufficiently large.</p>
first_indexed 2024-12-14T04:12:53Z
format Article
id doaj.art-f16bfbbe840547bca833201a54845c6f
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-14T04:12:53Z
publishDate 1997-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-f16bfbbe840547bca833201a54845c6f2022-12-21T23:17:37ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1997-01-0119973936095Inequalities for Laguerre functionsLove ER<p/> <p>The main published inequality for Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i1.gif"/></inline-formula> seems to be for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i2.gif"/></inline-formula> only; it is [2: 10.18(3)]: <inline-formula><graphic file="1029-242X-1997-936095-i3.gif"/></inline-formula>This paper presents several inequalities for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i4.gif"/></inline-formula> and Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i5.gif"/></inline-formula>, most of which do not seem to be in the existing literature. The corresponding inequalities for confluent hypergeometric functions are noted.</p> <p>For our work on expansions in series of Laguerre functions, M.N. Hunter and I needed an inequality for <inline-formula><graphic file="1029-242X-1997-936095-i6.gif"/></inline-formula> when re <inline-formula><graphic file="1029-242X-1997-936095-i7.gif"/></inline-formula> and re <inline-formula><graphic file="1029-242X-1997-936095-i8.gif"/></inline-formula> is large. The only extensions of the above inequality that we could obtain had multiples of <inline-formula><graphic file="1029-242X-1997-936095-i9.gif"/></inline-formula> on the right hand side instead of <inline-formula><graphic file="1029-242X-1997-936095-i10.gif"/></inline-formula>. This paper goes on to show that this is inevitable for non-integral <inline-formula><graphic file="1029-242X-1997-936095-i11.gif"/></inline-formula>, in that <inline-formula><graphic file="1029-242X-1997-936095-i12.gif"/></inline-formula> can exceed a multiple of <inline-formula><graphic file="1029-242X-1997-936095-i13.gif"/></inline-formula> for every fixed <inline-formula><graphic file="1029-242X-1997-936095-i14.gif"/></inline-formula> if <inline-formula><graphic file="1029-242X-1997-936095-i15.gif"/></inline-formula> is sufficiently large.</p>http://www.journalofinequalitiesandapplications.com/content/1/936095Laguerre polynomialLaguerre functionconfluent hypergeometric functionfractional integration
spellingShingle Love ER
Inequalities for Laguerre functions
Journal of Inequalities and Applications
Laguerre polynomial
Laguerre function
confluent hypergeometric function
fractional integration
title Inequalities for Laguerre functions
title_full Inequalities for Laguerre functions
title_fullStr Inequalities for Laguerre functions
title_full_unstemmed Inequalities for Laguerre functions
title_short Inequalities for Laguerre functions
title_sort inequalities for laguerre functions
topic Laguerre polynomial
Laguerre function
confluent hypergeometric function
fractional integration
url http://www.journalofinequalitiesandapplications.com/content/1/936095
work_keys_str_mv AT loveer inequalitiesforlaguerrefunctions