Inequalities for Laguerre functions
<p/> <p>The main published inequality for Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i1.gif"/></inline-formula> seems to be for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i2.gif"/&g...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
1997-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/1/936095 |
_version_ | 1818387623636369408 |
---|---|
author | Love ER |
author_facet | Love ER |
author_sort | Love ER |
collection | DOAJ |
description | <p/> <p>The main published inequality for Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i1.gif"/></inline-formula> seems to be for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i2.gif"/></inline-formula> only; it is [2: 10.18(3)]: <inline-formula><graphic file="1029-242X-1997-936095-i3.gif"/></inline-formula>This paper presents several inequalities for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i4.gif"/></inline-formula> and Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i5.gif"/></inline-formula>, most of which do not seem to be in the existing literature. The corresponding inequalities for confluent hypergeometric functions are noted.</p> <p>For our work on expansions in series of Laguerre functions, M.N. Hunter and I needed an inequality for <inline-formula><graphic file="1029-242X-1997-936095-i6.gif"/></inline-formula> when re <inline-formula><graphic file="1029-242X-1997-936095-i7.gif"/></inline-formula> and re <inline-formula><graphic file="1029-242X-1997-936095-i8.gif"/></inline-formula> is large. The only extensions of the above inequality that we could obtain had multiples of <inline-formula><graphic file="1029-242X-1997-936095-i9.gif"/></inline-formula> on the right hand side instead of <inline-formula><graphic file="1029-242X-1997-936095-i10.gif"/></inline-formula>. This paper goes on to show that this is inevitable for non-integral <inline-formula><graphic file="1029-242X-1997-936095-i11.gif"/></inline-formula>, in that <inline-formula><graphic file="1029-242X-1997-936095-i12.gif"/></inline-formula> can exceed a multiple of <inline-formula><graphic file="1029-242X-1997-936095-i13.gif"/></inline-formula> for every fixed <inline-formula><graphic file="1029-242X-1997-936095-i14.gif"/></inline-formula> if <inline-formula><graphic file="1029-242X-1997-936095-i15.gif"/></inline-formula> is sufficiently large.</p> |
first_indexed | 2024-12-14T04:12:53Z |
format | Article |
id | doaj.art-f16bfbbe840547bca833201a54845c6f |
institution | Directory Open Access Journal |
issn | 1025-5834 1029-242X |
language | English |
last_indexed | 2024-12-14T04:12:53Z |
publishDate | 1997-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of Inequalities and Applications |
spelling | doaj.art-f16bfbbe840547bca833201a54845c6f2022-12-21T23:17:37ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1997-01-0119973936095Inequalities for Laguerre functionsLove ER<p/> <p>The main published inequality for Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i1.gif"/></inline-formula> seems to be for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i2.gif"/></inline-formula> only; it is [2: 10.18(3)]: <inline-formula><graphic file="1029-242X-1997-936095-i3.gif"/></inline-formula>This paper presents several inequalities for Laguerre polynomials <inline-formula><graphic file="1029-242X-1997-936095-i4.gif"/></inline-formula> and Laguerre functions <inline-formula><graphic file="1029-242X-1997-936095-i5.gif"/></inline-formula>, most of which do not seem to be in the existing literature. The corresponding inequalities for confluent hypergeometric functions are noted.</p> <p>For our work on expansions in series of Laguerre functions, M.N. Hunter and I needed an inequality for <inline-formula><graphic file="1029-242X-1997-936095-i6.gif"/></inline-formula> when re <inline-formula><graphic file="1029-242X-1997-936095-i7.gif"/></inline-formula> and re <inline-formula><graphic file="1029-242X-1997-936095-i8.gif"/></inline-formula> is large. The only extensions of the above inequality that we could obtain had multiples of <inline-formula><graphic file="1029-242X-1997-936095-i9.gif"/></inline-formula> on the right hand side instead of <inline-formula><graphic file="1029-242X-1997-936095-i10.gif"/></inline-formula>. This paper goes on to show that this is inevitable for non-integral <inline-formula><graphic file="1029-242X-1997-936095-i11.gif"/></inline-formula>, in that <inline-formula><graphic file="1029-242X-1997-936095-i12.gif"/></inline-formula> can exceed a multiple of <inline-formula><graphic file="1029-242X-1997-936095-i13.gif"/></inline-formula> for every fixed <inline-formula><graphic file="1029-242X-1997-936095-i14.gif"/></inline-formula> if <inline-formula><graphic file="1029-242X-1997-936095-i15.gif"/></inline-formula> is sufficiently large.</p>http://www.journalofinequalitiesandapplications.com/content/1/936095Laguerre polynomialLaguerre functionconfluent hypergeometric functionfractional integration |
spellingShingle | Love ER Inequalities for Laguerre functions Journal of Inequalities and Applications Laguerre polynomial Laguerre function confluent hypergeometric function fractional integration |
title | Inequalities for Laguerre functions |
title_full | Inequalities for Laguerre functions |
title_fullStr | Inequalities for Laguerre functions |
title_full_unstemmed | Inequalities for Laguerre functions |
title_short | Inequalities for Laguerre functions |
title_sort | inequalities for laguerre functions |
topic | Laguerre polynomial Laguerre function confluent hypergeometric function fractional integration |
url | http://www.journalofinequalitiesandapplications.com/content/1/936095 |
work_keys_str_mv | AT loveer inequalitiesforlaguerrefunctions |