Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance
Abstract Background Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. Results In the study reported here, we evaluated possible relationship...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2021-02-01
|
Series: | BMC Plant Biology |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12870-020-02818-1 |
_version_ | 1818616567367204864 |
---|---|
author | Z. Y. Su J. J. Powell S. Gao M. Zhou C. Liu |
author_facet | Z. Y. Su J. J. Powell S. Gao M. Zhou C. Liu |
author_sort | Z. Y. Su |
collection | DOAJ |
description | Abstract Background Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. Results In the study reported here, we evaluated possible relationships between genes conferring FCR resistance and drought tolerance using two approaches. The first approach studied FCR induced differentially expressed genes (DEGs) targeting two barley and one wheat loci against a panel of genes curated from the literature based on known functions in drought tolerance. Of the 149 curated genes, 61.0% were responsive to FCR infection across the three loci. The second approach was a comparison of the global DEGs induced by FCR infection with the global transcriptomic responses under drought in wheat. This analysis found that approximately 48.0% of the DEGs detected one week following drought treatment and 74.4% of the DEGs detected three weeks following drought treatment were also differentially expressed between the susceptible and resistant isolines under FCR infection at one or more timepoints. As for the results from the first approach, the vast majority of common DEGs were downregulated under drought and expressed more highly in the resistant isoline than the sensitive isoline under FCR infection. Conclusions Results from this study suggest that the resistant isoline in wheat was experiencing less drought stress, which could contribute to the stronger defence response than the sensitive isoline. However, most of the genes induced by drought stress in barley were more highly expressed in the susceptible isolines than the resistant isolines under infection, indicating that genes conferring drought tolerance and FCR resistance may interact differently between these two crop species. Nevertheless, the strong relationship between FCR resistance and drought responsiveness provides further evidence indicating the possibility to enhance FCR resistance by manipulating genes conferring drought tolerance. |
first_indexed | 2024-12-16T16:51:51Z |
format | Article |
id | doaj.art-f18b1133f7ac48469cfdc8ca180458f5 |
institution | Directory Open Access Journal |
issn | 1471-2229 |
language | English |
last_indexed | 2024-12-16T16:51:51Z |
publishDate | 2021-02-01 |
publisher | BMC |
record_format | Article |
series | BMC Plant Biology |
spelling | doaj.art-f18b1133f7ac48469cfdc8ca180458f52022-12-21T22:24:01ZengBMCBMC Plant Biology1471-22292021-02-0121111110.1186/s12870-020-02818-1Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought toleranceZ. Y. Su0J. J. Powell1S. Gao2M. Zhou3C. Liu4CSIRO Agriculture and FoodCSIRO Agriculture and FoodCSIRO Agriculture and FoodTasmanian Institute of Agriculture, University of TasmaniaCSIRO Agriculture and FoodAbstract Background Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. Results In the study reported here, we evaluated possible relationships between genes conferring FCR resistance and drought tolerance using two approaches. The first approach studied FCR induced differentially expressed genes (DEGs) targeting two barley and one wheat loci against a panel of genes curated from the literature based on known functions in drought tolerance. Of the 149 curated genes, 61.0% were responsive to FCR infection across the three loci. The second approach was a comparison of the global DEGs induced by FCR infection with the global transcriptomic responses under drought in wheat. This analysis found that approximately 48.0% of the DEGs detected one week following drought treatment and 74.4% of the DEGs detected three weeks following drought treatment were also differentially expressed between the susceptible and resistant isolines under FCR infection at one or more timepoints. As for the results from the first approach, the vast majority of common DEGs were downregulated under drought and expressed more highly in the resistant isoline than the sensitive isoline under FCR infection. Conclusions Results from this study suggest that the resistant isoline in wheat was experiencing less drought stress, which could contribute to the stronger defence response than the sensitive isoline. However, most of the genes induced by drought stress in barley were more highly expressed in the susceptible isolines than the resistant isolines under infection, indicating that genes conferring drought tolerance and FCR resistance may interact differently between these two crop species. Nevertheless, the strong relationship between FCR resistance and drought responsiveness provides further evidence indicating the possibility to enhance FCR resistance by manipulating genes conferring drought tolerance.https://doi.org/10.1186/s12870-020-02818-1FusariumWheatBarleyCrown rotDrought toleranceRNA-seq |
spellingShingle | Z. Y. Su J. J. Powell S. Gao M. Zhou C. Liu Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance BMC Plant Biology Fusarium Wheat Barley Crown rot Drought tolerance RNA-seq |
title | Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance |
title_full | Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance |
title_fullStr | Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance |
title_full_unstemmed | Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance |
title_short | Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance |
title_sort | comparing transcriptional responses to fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance |
topic | Fusarium Wheat Barley Crown rot Drought tolerance RNA-seq |
url | https://doi.org/10.1186/s12870-020-02818-1 |
work_keys_str_mv | AT zysu comparingtranscriptionalresponsestofusariumcrownrotinwheatandbarleyidentifiedanimportantrelationshipbetweendiseaseresistanceanddroughttolerance AT jjpowell comparingtranscriptionalresponsestofusariumcrownrotinwheatandbarleyidentifiedanimportantrelationshipbetweendiseaseresistanceanddroughttolerance AT sgao comparingtranscriptionalresponsestofusariumcrownrotinwheatandbarleyidentifiedanimportantrelationshipbetweendiseaseresistanceanddroughttolerance AT mzhou comparingtranscriptionalresponsestofusariumcrownrotinwheatandbarleyidentifiedanimportantrelationshipbetweendiseaseresistanceanddroughttolerance AT cliu comparingtranscriptionalresponsestofusariumcrownrotinwheatandbarleyidentifiedanimportantrelationshipbetweendiseaseresistanceanddroughttolerance |