Quantum speed limits on operator flows and correlation functions

Quantum speed limits (QSLs) identify fundamental time scales of physical processes by providing lower bounds on the rate of change of a quantum state or the expectation value of an observable. We introduce a generalization of QSL for unitary operator flows, which are ubiquitous in physics and releva...

Full description

Bibliographic Details
Main Authors: Nicoletta Carabba, Niklas Hörnedal, Adolfo del Campo
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2022-12-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2022-12-22-884/pdf/
_version_ 1797979004249047040
author Nicoletta Carabba
Niklas Hörnedal
Adolfo del Campo
author_facet Nicoletta Carabba
Niklas Hörnedal
Adolfo del Campo
author_sort Nicoletta Carabba
collection DOAJ
description Quantum speed limits (QSLs) identify fundamental time scales of physical processes by providing lower bounds on the rate of change of a quantum state or the expectation value of an observable. We introduce a generalization of QSL for unitary operator flows, which are ubiquitous in physics and relevant for applications in both the quantum and classical domains. We derive two types of QSLs and assess the existence of a crossover between them, that we illustrate with a qubit and a random matrix Hamiltonian, as canonical examples. We further apply our results to the time evolution of autocorrelation functions, obtaining computable constraints on the linear dynamical response of quantum systems out of equilibrium and the quantum Fisher information governing the precision in quantum parameter estimation.
first_indexed 2024-04-11T05:32:04Z
format Article
id doaj.art-f18c5ef986f94edfbb721ebc313877ef
institution Directory Open Access Journal
issn 2521-327X
language English
last_indexed 2024-04-11T05:32:04Z
publishDate 2022-12-01
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
record_format Article
series Quantum
spelling doaj.art-f18c5ef986f94edfbb721ebc313877ef2022-12-22T17:01:40ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2022-12-01688410.22331/q-2022-12-22-88410.22331/q-2022-12-22-884Quantum speed limits on operator flows and correlation functionsNicoletta CarabbaNiklas HörnedalAdolfo del CampoQuantum speed limits (QSLs) identify fundamental time scales of physical processes by providing lower bounds on the rate of change of a quantum state or the expectation value of an observable. We introduce a generalization of QSL for unitary operator flows, which are ubiquitous in physics and relevant for applications in both the quantum and classical domains. We derive two types of QSLs and assess the existence of a crossover between them, that we illustrate with a qubit and a random matrix Hamiltonian, as canonical examples. We further apply our results to the time evolution of autocorrelation functions, obtaining computable constraints on the linear dynamical response of quantum systems out of equilibrium and the quantum Fisher information governing the precision in quantum parameter estimation.https://quantum-journal.org/papers/q-2022-12-22-884/pdf/
spellingShingle Nicoletta Carabba
Niklas Hörnedal
Adolfo del Campo
Quantum speed limits on operator flows and correlation functions
Quantum
title Quantum speed limits on operator flows and correlation functions
title_full Quantum speed limits on operator flows and correlation functions
title_fullStr Quantum speed limits on operator flows and correlation functions
title_full_unstemmed Quantum speed limits on operator flows and correlation functions
title_short Quantum speed limits on operator flows and correlation functions
title_sort quantum speed limits on operator flows and correlation functions
url https://quantum-journal.org/papers/q-2022-12-22-884/pdf/
work_keys_str_mv AT nicolettacarabba quantumspeedlimitsonoperatorflowsandcorrelationfunctions
AT niklashornedal quantumspeedlimitsonoperatorflowsandcorrelationfunctions
AT adolfodelcampo quantumspeedlimitsonoperatorflowsandcorrelationfunctions