Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions

<p>Abstract</p> <p>This article investigates a boundary value problem of Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Some new existence results are obtained by applying standard fixed point theorems.</p> &...

Full description

Bibliographic Details
Main Authors: Ahmad Bashir, Nieto Juan
Format: Article
Language:English
Published: SpringerOpen 2011-01-01
Series:Boundary Value Problems
Subjects:
Online Access:http://www.boundaryvalueproblems.com/content/2011/1/36
_version_ 1818752118322888704
author Ahmad Bashir
Nieto Juan
author_facet Ahmad Bashir
Nieto Juan
author_sort Ahmad Bashir
collection DOAJ
description <p>Abstract</p> <p>This article investigates a boundary value problem of Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Some new existence results are obtained by applying standard fixed point theorems.</p> <p> <b>2010 Mathematics Subject Classification</b>: 26A33; 34A34; 34B15.</p>
first_indexed 2024-12-18T04:46:23Z
format Article
id doaj.art-f190e99253fc4125a03ae4af5c431cf3
institution Directory Open Access Journal
issn 1687-2762
1687-2770
language English
last_indexed 2024-12-18T04:46:23Z
publishDate 2011-01-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-f190e99253fc4125a03ae4af5c431cf32022-12-21T21:20:34ZengSpringerOpenBoundary Value Problems1687-27621687-27702011-01-012011136Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditionsAhmad BashirNieto Juan<p>Abstract</p> <p>This article investigates a boundary value problem of Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Some new existence results are obtained by applying standard fixed point theorems.</p> <p> <b>2010 Mathematics Subject Classification</b>: 26A33; 34A34; 34B15.</p>http://www.boundaryvalueproblems.com/content/2011/1/36Riemann-Liouville calculusfractional integro-differential equationsfractional boundary conditionsfixed point theorems
spellingShingle Ahmad Bashir
Nieto Juan
Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
Boundary Value Problems
Riemann-Liouville calculus
fractional integro-differential equations
fractional boundary conditions
fixed point theorems
title Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
title_full Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
title_fullStr Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
title_full_unstemmed Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
title_short Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
title_sort riemann liouville fractional integro differential equations with fractional nonlocal integral boundary conditions
topic Riemann-Liouville calculus
fractional integro-differential equations
fractional boundary conditions
fixed point theorems
url http://www.boundaryvalueproblems.com/content/2011/1/36
work_keys_str_mv AT ahmadbashir riemannliouvillefractionalintegrodifferentialequationswithfractionalnonlocalintegralboundaryconditions
AT nietojuan riemannliouvillefractionalintegrodifferentialequationswithfractionalnonlocalintegralboundaryconditions