An Optimization Study to Evaluate the Impact of the Supercritical CO<sub>2</sub> Brayton Cycle’s Components on Its Overall Performance

The rising environmental problems due to fossil fuels’ consumption have pushed researchers and technologists to develop sustainable power systems. Due to properties such as abundance and nontoxicity of the working fluid, the supercritical carbon (<inline-formula><math xmlns="http://www...

Full description

Bibliographic Details
Main Authors: Khaled Alawadhi, Abdullah Alfalah, Bashar Bader, Yousef Alhouli, Ahmed Murad
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/5/2389
Description
Summary:The rising environmental problems due to fossil fuels’ consumption have pushed researchers and technologists to develop sustainable power systems. Due to properties such as abundance and nontoxicity of the working fluid, the supercritical carbon (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>sCO</mi></mrow><mn>2</mn></msub></mrow></semantics></math></inline-formula>) dioxide Brayton cycle is considered one of the most promising technologies among the various sustainable power systems. In the current study, a mathematical model has been developed and coded in Matlab for the recompression of the supercritical carbon dioxide Brayton cycle sCO<sub>2</sub>-BC. The real gas properties of supercritical carbon dioxide (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>sCO</mi></mrow><mn>2</mn></msub></mrow></semantics></math></inline-formula>) were incorporated into the program by pairing the NIST’s Refporp with Matlab© through a subroutine. The impacts of the various designs of the cycle’s individual components have been investigated on the performance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>sCO</mi></mrow><mn>2</mn></msub><mo>−</mo><mi>BC</mi></mrow></semantics></math></inline-formula>. The impact of various sedative cycle parameters, i.e., compressor’s inlet temperature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>T</mi><mn>1</mn></msub></mrow><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> and pressure (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>), cycle pressure ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math></inline-formula>), and split mass fraction (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>x</mi></semantics></math></inline-formula>), on the cycle’s performance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>η</mi><mrow><mi>c</mi><mi>y</mi><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>) were studied and highlighted. Moreover, an optimization study using the genetic algorithm was carried out to find the abovementioned cycle’s optimized values that maximize the cycle’s per-formance under provided design constraints and boundaries.
ISSN:2076-3417