Radiolysis-Assisted Direct Growth of Gold-Based Electrocatalysts for Glycerol Oxidation

The electrocatalytic oxidation of glycerol by metal electrocatalysts is an effective method of low-energy-input hydrogen production in membrane reactors in alkaline conditions. The aim of the present study is to examine the proof of concept for the gamma-radiolysis-assisted direct growth of monometa...

Full description

Bibliographic Details
Main Authors: Nazym Tuleushova, Aisara Amanova, Ibrahim Abdellah, Mireille Benoit, Hynd Remita, David Cornu, Yaovi Holade, Sophie Tingry
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/13/11/1713
Description
Summary:The electrocatalytic oxidation of glycerol by metal electrocatalysts is an effective method of low-energy-input hydrogen production in membrane reactors in alkaline conditions. The aim of the present study is to examine the proof of concept for the gamma-radiolysis-assisted direct growth of monometallic gold and bimetallic gold–silver nanostructured particles. We revised the gamma radiolysis procedure to generate free-standing Au and Au-Ag nano- and micro-structured particles onto a gas diffusion electrode by the immersion of the substrate in the reaction mixture. The metal particles were synthesized by radiolysis on a flat carbon paper in the presence of capping agents. We have integrated different methods (SEM, EDX, XPS, XRD, ICP-OES, CV, and EIS) to examine in detail the as-synthesized materials and interrogate their electrocatalytic efficiency for glycerol oxidation under baseline conditions to establish a structure–performance relationship. The developed strategy can be easily extended to the synthesis by radiolysis of other types of ready-to-use metal electrocatalysts as advanced electrode materials for heterogeneous catalysis.
ISSN:2079-4991