In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerism
IntroductionFeto-maternal cell transfer during pregnancy is called microchimerism (Mc). Its persistence in respective hosts is increasingly studied as to its potential role in immune tolerance, autoimmunity, cancer, and degenerative diseases. Murine models with transgenic reporter genes, heterozygou...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-07-01
|
Series: | Frontiers in Immunology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fimmu.2023.1200920/full |
_version_ | 1797770367150850048 |
---|---|
author | Mathilde Giassi Marie F. Hemon Marie F. Hemon Marielle Martin Jean Roudier Jean Roudier Isabelle Auger Nathalie C. Lambert |
author_facet | Mathilde Giassi Marie F. Hemon Marie F. Hemon Marielle Martin Jean Roudier Jean Roudier Isabelle Auger Nathalie C. Lambert |
author_sort | Mathilde Giassi |
collection | DOAJ |
description | IntroductionFeto-maternal cell transfer during pregnancy is called microchimerism (Mc). Its persistence in respective hosts is increasingly studied as to its potential role in immune tolerance, autoimmunity, cancer, and degenerative diseases. Murine models with transgenic reporter genes, heterozygously carried by the mother, allow maternal Mc tracking in wild-type (WT) offspring. However, as gestation in mice is multi-embryonic, an exchange of cells between fetuses carrying the same reporter gene as their mother and negative WT littermate, named littermate Mc (LMc), can occur and be confounded with the maternal source. We propose here to evaluate LMc contribution in mice.MethodsTo avoid the maternal confounding source of Mc, transgenic males, heterozygous for a reporter gene, here, the human leukocyte antigen DRB1*04 (DR4+/−), were crossed with WT females (DR4−/−). DR4+/− LMc was specifically quantified by HLA-DR4 quantitative PCR, i) in utero in main organs from 15 DR4−/− fetuses from three litters of 11, nine, and five; and ii) after birth in two litters of eight pups: in two DR4−/− stillborns and four DR4−/− adult mice.ResultsAt embryonic stages, DR4−/− fetuses having one or two nearby DR4+/− littermates in the same uterine horn were almost seven times more frequently positive for DR4− microchimerism in their organs (p = 0.01) and had quantitatively more LMc (p = 0.009) than those without nearby DR4+/− littermates. Furthermore, LMc persists at birth and into adulthood with interindividual heterogeneity.ConclusionsThis study identifies heterogeneity for LMc acquisition according to in utero position and different interpretation of previously published results on maternal Mc in mice. |
first_indexed | 2024-03-12T21:22:17Z |
format | Article |
id | doaj.art-f199b368a92c4571b6aa6684b898d47a |
institution | Directory Open Access Journal |
issn | 1664-3224 |
language | English |
last_indexed | 2024-03-12T21:22:17Z |
publishDate | 2023-07-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Immunology |
spelling | doaj.art-f199b368a92c4571b6aa6684b898d47a2023-07-28T17:55:10ZengFrontiers Media S.A.Frontiers in Immunology1664-32242023-07-011410.3389/fimmu.2023.12009201200920In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerismMathilde Giassi0Marie F. Hemon1Marie F. Hemon2Marielle Martin3Jean Roudier4Jean Roudier5Isabelle Auger6Nathalie C. Lambert7Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, FranceInstitut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, FranceArthritis R&D, Neuilly-sur-Seine, FranceInstitut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, FranceInstitut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, FranceRheumatology Department, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, FranceInstitut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, FranceInstitut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, FranceIntroductionFeto-maternal cell transfer during pregnancy is called microchimerism (Mc). Its persistence in respective hosts is increasingly studied as to its potential role in immune tolerance, autoimmunity, cancer, and degenerative diseases. Murine models with transgenic reporter genes, heterozygously carried by the mother, allow maternal Mc tracking in wild-type (WT) offspring. However, as gestation in mice is multi-embryonic, an exchange of cells between fetuses carrying the same reporter gene as their mother and negative WT littermate, named littermate Mc (LMc), can occur and be confounded with the maternal source. We propose here to evaluate LMc contribution in mice.MethodsTo avoid the maternal confounding source of Mc, transgenic males, heterozygous for a reporter gene, here, the human leukocyte antigen DRB1*04 (DR4+/−), were crossed with WT females (DR4−/−). DR4+/− LMc was specifically quantified by HLA-DR4 quantitative PCR, i) in utero in main organs from 15 DR4−/− fetuses from three litters of 11, nine, and five; and ii) after birth in two litters of eight pups: in two DR4−/− stillborns and four DR4−/− adult mice.ResultsAt embryonic stages, DR4−/− fetuses having one or two nearby DR4+/− littermates in the same uterine horn were almost seven times more frequently positive for DR4− microchimerism in their organs (p = 0.01) and had quantitatively more LMc (p = 0.009) than those without nearby DR4+/− littermates. Furthermore, LMc persists at birth and into adulthood with interindividual heterogeneity.ConclusionsThis study identifies heterogeneity for LMc acquisition according to in utero position and different interpretation of previously published results on maternal Mc in mice.https://www.frontiersin.org/articles/10.3389/fimmu.2023.1200920/fullchimerismin uterolittermatematernalHLA-DR4mouse |
spellingShingle | Mathilde Giassi Marie F. Hemon Marie F. Hemon Marielle Martin Jean Roudier Jean Roudier Isabelle Auger Nathalie C. Lambert In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerism Frontiers in Immunology chimerism in utero littermate maternal HLA-DR4 mouse |
title | In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerism |
title_full | In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerism |
title_fullStr | In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerism |
title_full_unstemmed | In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerism |
title_short | In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerism |
title_sort | in utero position matters for littermate cell transfer in mice an additional and confounding source with maternal microchimerism |
topic | chimerism in utero littermate maternal HLA-DR4 mouse |
url | https://www.frontiersin.org/articles/10.3389/fimmu.2023.1200920/full |
work_keys_str_mv | AT mathildegiassi inuteropositionmattersforlittermatecelltransferinmiceanadditionalandconfoundingsourcewithmaternalmicrochimerism AT mariefhemon inuteropositionmattersforlittermatecelltransferinmiceanadditionalandconfoundingsourcewithmaternalmicrochimerism AT mariefhemon inuteropositionmattersforlittermatecelltransferinmiceanadditionalandconfoundingsourcewithmaternalmicrochimerism AT mariellemartin inuteropositionmattersforlittermatecelltransferinmiceanadditionalandconfoundingsourcewithmaternalmicrochimerism AT jeanroudier inuteropositionmattersforlittermatecelltransferinmiceanadditionalandconfoundingsourcewithmaternalmicrochimerism AT jeanroudier inuteropositionmattersforlittermatecelltransferinmiceanadditionalandconfoundingsourcewithmaternalmicrochimerism AT isabelleauger inuteropositionmattersforlittermatecelltransferinmiceanadditionalandconfoundingsourcewithmaternalmicrochimerism AT nathalieclambert inuteropositionmattersforlittermatecelltransferinmiceanadditionalandconfoundingsourcewithmaternalmicrochimerism |