Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation

Abstract In this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation { − ( u ′ 1 − u ′ 2 ) ′ = λ f ( u ) , x ∈ ( − L , L ) , u ( − L ) = 0 = u ( L ) , $$ \textstyle\begin{cases} - (\frac{u'}{\sqrt{1-u^{\prime...

Full description

Bibliographic Details
Main Authors: Hongliang Gao, Jing Xu
Format: Article
Language:English
Published: SpringerOpen 2021-09-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-021-01558-x
_version_ 1823938809453084672
author Hongliang Gao
Jing Xu
author_facet Hongliang Gao
Jing Xu
author_sort Hongliang Gao
collection DOAJ
description Abstract In this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation { − ( u ′ 1 − u ′ 2 ) ′ = λ f ( u ) , x ∈ ( − L , L ) , u ( − L ) = 0 = u ( L ) , $$ \textstyle\begin{cases} - (\frac{u'}{\sqrt{1-u^{\prime \,2}}} )'=\lambda f(u), &x\in (-L,L), \\ u(-L)=0=u(L), \end{cases} $$ where λ and L are positive parameters, f ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) $f\in C[0,\infty ) \cap C^{2}(0,\infty )$ , and f ( u ) > 0 $f(u)>0$ for 0 < u < L $0< u< L$ . We give the precise description of the structure of the bifurcation curves and obtain the exact number of positive solutions of the above problem when f satisfies f ″ ( u ) > 0 $f''(u)>0$ and u f ′ ( u ) ≥ f ( u ) + 1 2 u 2 f ″ ( u ) $uf'(u)\geq f(u)+\frac{1}{2}u^{2}f''(u)$ for 0 < u < L $0< u< L$ . In two different cases, we obtain that the above problem has zero, exactly one, or exactly two positive solutions according to different ranges of λ. The arguments are based upon a detailed analysis of the time map.
first_indexed 2024-12-17T02:51:00Z
format Article
id doaj.art-f1a9b10b68714860a6f0368572f5b24a
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-17T02:51:00Z
publishDate 2021-09-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-f1a9b10b68714860a6f0368572f5b24a2022-12-21T22:06:25ZengSpringerOpenBoundary Value Problems1687-27702021-09-012021111010.1186/s13661-021-01558-xBifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equationHongliang Gao0Jing Xu1Department of Mathematics, LanZhou Jiaotong UniversityDepartment of Mathematics, LanZhou Jiaotong UniversityAbstract In this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation { − ( u ′ 1 − u ′ 2 ) ′ = λ f ( u ) , x ∈ ( − L , L ) , u ( − L ) = 0 = u ( L ) , $$ \textstyle\begin{cases} - (\frac{u'}{\sqrt{1-u^{\prime \,2}}} )'=\lambda f(u), &x\in (-L,L), \\ u(-L)=0=u(L), \end{cases} $$ where λ and L are positive parameters, f ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) $f\in C[0,\infty ) \cap C^{2}(0,\infty )$ , and f ( u ) > 0 $f(u)>0$ for 0 < u < L $0< u< L$ . We give the precise description of the structure of the bifurcation curves and obtain the exact number of positive solutions of the above problem when f satisfies f ″ ( u ) > 0 $f''(u)>0$ and u f ′ ( u ) ≥ f ( u ) + 1 2 u 2 f ″ ( u ) $uf'(u)\geq f(u)+\frac{1}{2}u^{2}f''(u)$ for 0 < u < L $0< u< L$ . In two different cases, we obtain that the above problem has zero, exactly one, or exactly two positive solutions according to different ranges of λ. The arguments are based upon a detailed analysis of the time map.https://doi.org/10.1186/s13661-021-01558-xMinkowski-curvature equationExact multiplicityPositive solutionBifurcation curvesTime map
spellingShingle Hongliang Gao
Jing Xu
Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation
Boundary Value Problems
Minkowski-curvature equation
Exact multiplicity
Positive solution
Bifurcation curves
Time map
title Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation
title_full Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation
title_fullStr Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation
title_full_unstemmed Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation
title_short Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation
title_sort bifurcation curves and exact multiplicity of positive solutions for dirichlet problems with the minkowski curvature equation
topic Minkowski-curvature equation
Exact multiplicity
Positive solution
Bifurcation curves
Time map
url https://doi.org/10.1186/s13661-021-01558-x
work_keys_str_mv AT honglianggao bifurcationcurvesandexactmultiplicityofpositivesolutionsfordirichletproblemswiththeminkowskicurvatureequation
AT jingxu bifurcationcurvesandexactmultiplicityofpositivesolutionsfordirichletproblemswiththeminkowskicurvatureequation