Summary: | Two near natural old-growth forests, one dominated by Picea abies and the other by Pinus sylvestris, were studied for their fire history, and spatial patterns of trees and tree ages. The spatial tree age structure and the disturbance history of the forests were examined by drawing age class maps based on mapped and aged trees and by dating fires based on fire scars, and by using spatial analyses at tree scale. The tree age structures of the Picea and Pinus dominated forests were different, mainly due to differences in fire history and sensitivity of the dominant tree species to fire. Fire histories and tree age structures of both sites have probably been affected by human in the ancient past. However, in the Picea dominated site, the fires had been severe, killing most of the trees, whereas in the Pinus dominated site the severity of fires had been more variable, leaving some Pinus and even Picea trees alive. In the Pinus dominated site, the tree age distribution was multimodal, consisting of two Pinus cohorts, which were established after fires and a later Picea regeneration. The Picea dominated site was composed of four patches of different disturbance history. In the oldest patch, the tree age distribution was unimodal, with no distinct cohorts, while a single cohort that regenerated after severe fire disturbances dominated the three other patches. In both sites the overall spatial patterns of living and dead trees were random and the proportion of spatially autocorrelated variance of tree age was low. This means that trees of different age grew more or less mixed in the forest without forming spatially distinct regeneration patches, even in the oldest patch of Picea dominated Liimatanvaara, well over 200 years after a fire. The results show that detail knowledge of disturbance history is essential for understanding the development of tree age structures and their spatial patterns.
|