Design of high maneuverability vehicle with a stable controlled load-carrying platform for transporting rescues on disorderly ground

A disaster, such a heavy rain or an earth quake, breaks many roads. People, which are suffered a damage, needs rescue however transport and rescue trucks cannot move on a disorderly ground because the truck's load shifted by inclination of the load-platform. This study designs a high maneuv...

Full description

Bibliographic Details
Main Authors: Masayoshi DOI, Shou FUKUHARA
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2015-01-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/81/824/81_14-00503/_pdf/-char/en
Description
Summary:A disaster, such a heavy rain or an earth quake, breaks many roads. People, which are suffered a damage, needs rescue however transport and rescue trucks cannot move on a disorderly ground because the truck's load shifted by inclination of the load-platform. This study designs a high maneuverability vehicle with a balance control of a load-carrying platform. The proposed vehicle can transport the rescues and the injury people on the disorderly ground. This study detected a delay time in regard of controlling the motion of the load-carrying platform. Generalized Minimum Variance Control, which is one of the predictive control, is applied to the control system.
ISSN:2187-9761