Differential regulation of adipokines may influence migratory behavior in the white-throated sparrow (Zonotrichia albicollis).
White-throated sparrows increase fat deposits during pre-migratory periods and rely on these fat stores to fuel migration. Adipose tissue produces hormones and signaling factors in a rhythmic fashion and may be controlled by a clock in adipose tissue or driven by a master clock in the brain. The mas...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3681758?pdf=render |
_version_ | 1818478063829123072 |
---|---|
author | Erica F Stuber Jessica Verpeut Maria Horvat-Gordon Ramesh Ramachandran Paul A Bartell |
author_facet | Erica F Stuber Jessica Verpeut Maria Horvat-Gordon Ramesh Ramachandran Paul A Bartell |
author_sort | Erica F Stuber |
collection | DOAJ |
description | White-throated sparrows increase fat deposits during pre-migratory periods and rely on these fat stores to fuel migration. Adipose tissue produces hormones and signaling factors in a rhythmic fashion and may be controlled by a clock in adipose tissue or driven by a master clock in the brain. The master clock may convey photoperiodic information from the environment to adipose tissue to facilitate pre-migratory fattening, and adipose tissue may, in turn, release adipokines to indicate the extent of fat energy stores. Here, we present evidence that a change in signal from the adipokines adiponectin and visfatin may act to indicate body condition, thereby influencing an individual's decision to commence migratory flight, or to delay until adequate fat stores are acquired. We quantified plasma adiponectin and visfatin levels across the day in captive birds held under constant photoperiod. The circadian profiles of plasma adiponectin in non-migrating birds were approximately inverse the profiles from migrating birds. Adiponectin levels were positively correlated to body fat, and body fat was inversely related to the appearance of nocturnal migratory restlessness. Visfatin levels were constant across the day and did not correlate with fat deposits; however, a reduction in plasma visfatin concentration occurred during the migratory period. The data suggest that a significant change in the biological control of adipokine expression exists between the two migratory conditions and we propose a role for adiponectin, visfatin and adipose clocks in the regulation of migratory behaviors. |
first_indexed | 2024-12-10T09:43:35Z |
format | Article |
id | doaj.art-f1ba717794734c5ba24e28397c902844 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-10T09:43:35Z |
publishDate | 2013-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-f1ba717794734c5ba24e28397c9028442022-12-22T01:53:55ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0186e5909710.1371/journal.pone.0059097Differential regulation of adipokines may influence migratory behavior in the white-throated sparrow (Zonotrichia albicollis).Erica F StuberJessica VerpeutMaria Horvat-GordonRamesh RamachandranPaul A BartellWhite-throated sparrows increase fat deposits during pre-migratory periods and rely on these fat stores to fuel migration. Adipose tissue produces hormones and signaling factors in a rhythmic fashion and may be controlled by a clock in adipose tissue or driven by a master clock in the brain. The master clock may convey photoperiodic information from the environment to adipose tissue to facilitate pre-migratory fattening, and adipose tissue may, in turn, release adipokines to indicate the extent of fat energy stores. Here, we present evidence that a change in signal from the adipokines adiponectin and visfatin may act to indicate body condition, thereby influencing an individual's decision to commence migratory flight, or to delay until adequate fat stores are acquired. We quantified plasma adiponectin and visfatin levels across the day in captive birds held under constant photoperiod. The circadian profiles of plasma adiponectin in non-migrating birds were approximately inverse the profiles from migrating birds. Adiponectin levels were positively correlated to body fat, and body fat was inversely related to the appearance of nocturnal migratory restlessness. Visfatin levels were constant across the day and did not correlate with fat deposits; however, a reduction in plasma visfatin concentration occurred during the migratory period. The data suggest that a significant change in the biological control of adipokine expression exists between the two migratory conditions and we propose a role for adiponectin, visfatin and adipose clocks in the regulation of migratory behaviors.http://europepmc.org/articles/PMC3681758?pdf=render |
spellingShingle | Erica F Stuber Jessica Verpeut Maria Horvat-Gordon Ramesh Ramachandran Paul A Bartell Differential regulation of adipokines may influence migratory behavior in the white-throated sparrow (Zonotrichia albicollis). PLoS ONE |
title | Differential regulation of adipokines may influence migratory behavior in the white-throated sparrow (Zonotrichia albicollis). |
title_full | Differential regulation of adipokines may influence migratory behavior in the white-throated sparrow (Zonotrichia albicollis). |
title_fullStr | Differential regulation of adipokines may influence migratory behavior in the white-throated sparrow (Zonotrichia albicollis). |
title_full_unstemmed | Differential regulation of adipokines may influence migratory behavior in the white-throated sparrow (Zonotrichia albicollis). |
title_short | Differential regulation of adipokines may influence migratory behavior in the white-throated sparrow (Zonotrichia albicollis). |
title_sort | differential regulation of adipokines may influence migratory behavior in the white throated sparrow zonotrichia albicollis |
url | http://europepmc.org/articles/PMC3681758?pdf=render |
work_keys_str_mv | AT ericafstuber differentialregulationofadipokinesmayinfluencemigratorybehaviorinthewhitethroatedsparrowzonotrichiaalbicollis AT jessicaverpeut differentialregulationofadipokinesmayinfluencemigratorybehaviorinthewhitethroatedsparrowzonotrichiaalbicollis AT mariahorvatgordon differentialregulationofadipokinesmayinfluencemigratorybehaviorinthewhitethroatedsparrowzonotrichiaalbicollis AT rameshramachandran differentialregulationofadipokinesmayinfluencemigratorybehaviorinthewhitethroatedsparrowzonotrichiaalbicollis AT paulabartell differentialregulationofadipokinesmayinfluencemigratorybehaviorinthewhitethroatedsparrowzonotrichiaalbicollis |