Phase Structures and Dielectric Properties of (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) Microwave Ceramic Systems with TiO<sub>2</sub> Addition

Ti<sup>4+</sup>-ion-doped (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) ceramic systems were prepared with the conventional solid-state reaction method, and the effects of the phase structures and compositions, sintering behavi...

Full description

Bibliographic Details
Main Authors: Qi Su, Jingjing Qu, Fei Liu, Changlai Yuan, Xiao Liu, Mingwei Su, Liufang Meng, Guohua Chen
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/13/6/955
_version_ 1797595362874097664
author Qi Su
Jingjing Qu
Fei Liu
Changlai Yuan
Xiao Liu
Mingwei Su
Liufang Meng
Guohua Chen
author_facet Qi Su
Jingjing Qu
Fei Liu
Changlai Yuan
Xiao Liu
Mingwei Su
Liufang Meng
Guohua Chen
author_sort Qi Su
collection DOAJ
description Ti<sup>4+</sup>-ion-doped (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) ceramic systems were prepared with the conventional solid-state reaction method, and the effects of the phase structures and compositions, sintering behaviors, microstructures and microwave dielectric properties of these ceramic systems were investigated in detail as a function of TiO<sub>2</sub> content. The analytical results of the XRD patterns show that the pure (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) system is a composite-phase ceramic system with coexisting SrCeO<sub>3</sub> and Sr<sub>2</sub>CeO<sub>4</sub> phases (represented as a SrCeO<sub>3</sub> + Sr<sub>2</sub>CeO<sub>4</sub> system), which belong to the orthogonal structures of the Pmcn (62) and Pbam (55) space groups, respectively. For the <i>x</i>TiO<sub>2</sub>-(1 − x) (SrCeO<sub>3</sub> + Sr<sub>2</sub>CeO<sub>4</sub>) (<i>x</i> = 0.1–0.4) ceramic samples, the secondary phase Sr<sub>2</sub>TiO<sub>4</sub> can also be detected within the range of the investigated components. Meanwhile, the Raman spectroscopy, SEM-EDS, and HRTEM (SAED) analysis results also verified the correctness and consistency of the phase structures and compositions for all the given specimens. In addition, complex impedance spectroscopy was used to detect the conductive behavior of these compound ceramic systems, and the calculation results show that the appropriate addition of Ti<sup>4+</sup>-ions can make the SrCeO<sub>3</sub> + Sr<sub>2</sub>CeO<sub>4</sub> system have better thermal stability. The composition of <i>x</i> = 0.2 multiphase structural ceramic sample sintered at 1330 °C for 4 h has a near zero τ<i><sub>f</sub></i> value of ~−4.6 ppm/°C, a moderate <i>ε</i><sub>r</sub> of ~40.3 and a higher <i>Q</i> × <i>f</i>~44,020 GHz (at 6.56 GHz). The relatively superior-performing ceramics developed in this work are expected to provide a promising microwave dielectric material for communication components.
first_indexed 2024-03-11T02:36:20Z
format Article
id doaj.art-f1be4bb4c4a847e3ba2ac6967338c0f1
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-11T02:36:20Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-f1be4bb4c4a847e3ba2ac6967338c0f12023-11-18T09:57:04ZengMDPI AGCrystals2073-43522023-06-0113695510.3390/cryst13060955Phase Structures and Dielectric Properties of (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) Microwave Ceramic Systems with TiO<sub>2</sub> AdditionQi Su0Jingjing Qu1Fei Liu2Changlai Yuan3Xiao Liu4Mingwei Su5Liufang Meng6Guohua Chen7School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, ChinaSchool of Electronic Engineering Automation, Guilin University of Electronic Technology, Guilin 541004, ChinaSchool of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, ChinaGuangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, ChinaGuangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, ChinaGuangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, ChinaGuangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, ChinaGuangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, ChinaTi<sup>4+</sup>-ion-doped (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) ceramic systems were prepared with the conventional solid-state reaction method, and the effects of the phase structures and compositions, sintering behaviors, microstructures and microwave dielectric properties of these ceramic systems were investigated in detail as a function of TiO<sub>2</sub> content. The analytical results of the XRD patterns show that the pure (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) system is a composite-phase ceramic system with coexisting SrCeO<sub>3</sub> and Sr<sub>2</sub>CeO<sub>4</sub> phases (represented as a SrCeO<sub>3</sub> + Sr<sub>2</sub>CeO<sub>4</sub> system), which belong to the orthogonal structures of the Pmcn (62) and Pbam (55) space groups, respectively. For the <i>x</i>TiO<sub>2</sub>-(1 − x) (SrCeO<sub>3</sub> + Sr<sub>2</sub>CeO<sub>4</sub>) (<i>x</i> = 0.1–0.4) ceramic samples, the secondary phase Sr<sub>2</sub>TiO<sub>4</sub> can also be detected within the range of the investigated components. Meanwhile, the Raman spectroscopy, SEM-EDS, and HRTEM (SAED) analysis results also verified the correctness and consistency of the phase structures and compositions for all the given specimens. In addition, complex impedance spectroscopy was used to detect the conductive behavior of these compound ceramic systems, and the calculation results show that the appropriate addition of Ti<sup>4+</sup>-ions can make the SrCeO<sub>3</sub> + Sr<sub>2</sub>CeO<sub>4</sub> system have better thermal stability. The composition of <i>x</i> = 0.2 multiphase structural ceramic sample sintered at 1330 °C for 4 h has a near zero τ<i><sub>f</sub></i> value of ~−4.6 ppm/°C, a moderate <i>ε</i><sub>r</sub> of ~40.3 and a higher <i>Q</i> × <i>f</i>~44,020 GHz (at 6.56 GHz). The relatively superior-performing ceramics developed in this work are expected to provide a promising microwave dielectric material for communication components.https://www.mdpi.com/2073-4352/13/6/955phase structures and compositionsSrCeO<sub>3</sub> + Sr<sub>2</sub>CeO<sub>4</sub> systemTiO<sub>2</sub> additionmicrowave dielectric properties
spellingShingle Qi Su
Jingjing Qu
Fei Liu
Changlai Yuan
Xiao Liu
Mingwei Su
Liufang Meng
Guohua Chen
Phase Structures and Dielectric Properties of (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) Microwave Ceramic Systems with TiO<sub>2</sub> Addition
Crystals
phase structures and compositions
SrCeO<sub>3</sub> + Sr<sub>2</sub>CeO<sub>4</sub> system
TiO<sub>2</sub> addition
microwave dielectric properties
title Phase Structures and Dielectric Properties of (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) Microwave Ceramic Systems with TiO<sub>2</sub> Addition
title_full Phase Structures and Dielectric Properties of (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) Microwave Ceramic Systems with TiO<sub>2</sub> Addition
title_fullStr Phase Structures and Dielectric Properties of (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) Microwave Ceramic Systems with TiO<sub>2</sub> Addition
title_full_unstemmed Phase Structures and Dielectric Properties of (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) Microwave Ceramic Systems with TiO<sub>2</sub> Addition
title_short Phase Structures and Dielectric Properties of (<i>n</i> + 1)SrO − <i>n</i>CeO<sub>2</sub> (<i>n</i> = 2) Microwave Ceramic Systems with TiO<sub>2</sub> Addition
title_sort phase structures and dielectric properties of i n i 1 sro i n i ceo sub 2 sub i n i 2 microwave ceramic systems with tio sub 2 sub addition
topic phase structures and compositions
SrCeO<sub>3</sub> + Sr<sub>2</sub>CeO<sub>4</sub> system
TiO<sub>2</sub> addition
microwave dielectric properties
url https://www.mdpi.com/2073-4352/13/6/955
work_keys_str_mv AT qisu phasestructuresanddielectricpropertiesofini1sroiniceosub2subini2microwaveceramicsystemswithtiosub2subaddition
AT jingjingqu phasestructuresanddielectricpropertiesofini1sroiniceosub2subini2microwaveceramicsystemswithtiosub2subaddition
AT feiliu phasestructuresanddielectricpropertiesofini1sroiniceosub2subini2microwaveceramicsystemswithtiosub2subaddition
AT changlaiyuan phasestructuresanddielectricpropertiesofini1sroiniceosub2subini2microwaveceramicsystemswithtiosub2subaddition
AT xiaoliu phasestructuresanddielectricpropertiesofini1sroiniceosub2subini2microwaveceramicsystemswithtiosub2subaddition
AT mingweisu phasestructuresanddielectricpropertiesofini1sroiniceosub2subini2microwaveceramicsystemswithtiosub2subaddition
AT liufangmeng phasestructuresanddielectricpropertiesofini1sroiniceosub2subini2microwaveceramicsystemswithtiosub2subaddition
AT guohuachen phasestructuresanddielectricpropertiesofini1sroiniceosub2subini2microwaveceramicsystemswithtiosub2subaddition