Specific Flavonoids and Their Biosynthetic Pathway in Scutellaria baicalensis

Scutellaria baicalensis, is one of the most traditional medicinal plants in the Lamiaceae family, and has been widely used to treat liver and lung complaints and as a complementary cancer treatment in traditional Chinese medicine. The preparation from its roots, called “Huang Qin,” is rich in specia...

Full description

Bibliographic Details
Main Authors: Tianlin Pei, Mengxiao Yan, Yanbo Huang, Yukun Wei, Cathie Martin, Qing Zhao
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-03-01
Series:Frontiers in Plant Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpls.2022.866282/full
Description
Summary:Scutellaria baicalensis, is one of the most traditional medicinal plants in the Lamiaceae family, and has been widely used to treat liver and lung complaints and as a complementary cancer treatment in traditional Chinese medicine. The preparation from its roots, called “Huang Qin,” is rich in specialized flavones such as baicalein, wogonin, and their glycosides which lack a 4′-hydroxyl group on the B ring (4′-deoxyflavones), with anti-tumor, antioxidant, and antiviral activities. Baicalein has recently been reported to inhibit the replication of the COVID-19 virus. These 4′-deoxyflavones are found only in the order Lamiales and were discovered in the genus Scutellaria, suggesting that a new metabolic pathway synthesizing 4′-deoxyflavones evolved recently in this genus. In this review, we focus on the class of 4′-deoxyflavones in S. baicalensis and their pharmacological properties. We also describe the apparent evolutionary route taken by the genes encoding enzymes involved in the novel, root-specific, biosynthetic pathway for baicalein and wogonin, which provides insights into the evolution of specific flavone biosynthetic pathways in the mint family.
ISSN:1664-462X