Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators

In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach e...

Full description

Bibliographic Details
Main Authors: Ángel Arturo Rendón-Castro, Dante Mújica-Vargas, Antonio Luna-Álvarez, Jean Marie Vianney Kinani
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/8/1176
Description
Summary:In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach effectively suppresses impulsive, additive, and multiplicative noise across varied densities. Our proposed filter operates on both grayscale and color images; it uses local information obtained from the Wiener filter and robust outlier rejection based on Insha and Hampel’s tripartite redescending influence functions. The effectiveness of the proposed method is verified through qualitative and quantitative results, using metrics such as PSNR, MAE, and SSIM.
ISSN:1099-4300