Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators

In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach e...

Full description

Bibliographic Details
Main Authors: Ángel Arturo Rendón-Castro, Dante Mújica-Vargas, Antonio Luna-Álvarez, Jean Marie Vianney Kinani
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/8/1176
_version_ 1797584867157868544
author Ángel Arturo Rendón-Castro
Dante Mújica-Vargas
Antonio Luna-Álvarez
Jean Marie Vianney Kinani
author_facet Ángel Arturo Rendón-Castro
Dante Mújica-Vargas
Antonio Luna-Álvarez
Jean Marie Vianney Kinani
author_sort Ángel Arturo Rendón-Castro
collection DOAJ
description In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach effectively suppresses impulsive, additive, and multiplicative noise across varied densities. Our proposed filter operates on both grayscale and color images; it uses local information obtained from the Wiener filter and robust outlier rejection based on Insha and Hampel’s tripartite redescending influence functions. The effectiveness of the proposed method is verified through qualitative and quantitative results, using metrics such as PSNR, MAE, and SSIM.
first_indexed 2024-03-10T23:58:48Z
format Article
id doaj.art-f1ff2070deda4aeea59cbb5e9ae27f2e
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T23:58:48Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-f1ff2070deda4aeea59cbb5e9ae27f2e2023-11-19T00:59:38ZengMDPI AGEntropy1099-43002023-08-01258117610.3390/e25081176Enhancing Image Quality via Robust Noise Filtering Using Redescending M-EstimatorsÁngel Arturo Rendón-Castro0Dante Mújica-Vargas1Antonio Luna-Álvarez2Jean Marie Vianney Kinani3Department of Computer Science, Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Palmira, Cuernavaca 62490, MexicoDepartment of Computer Science, Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Palmira, Cuernavaca 62490, MexicoDepartment of Computer Science, Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Palmira, Cuernavaca 62490, MexicoUnidad Profesional Interdiciplinaria de Ingeniería Campus Hidalgo, Instituto Politécnico Nacional, Pachuca 07738, MexicoIn the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach effectively suppresses impulsive, additive, and multiplicative noise across varied densities. Our proposed filter operates on both grayscale and color images; it uses local information obtained from the Wiener filter and robust outlier rejection based on Insha and Hampel’s tripartite redescending influence functions. The effectiveness of the proposed method is verified through qualitative and quantitative results, using metrics such as PSNR, MAE, and SSIM.https://www.mdpi.com/1099-4300/25/8/1176noise filteringredescending M-estimatorimage processingmultiplicative noiseadditive noiseimpulsive noise
spellingShingle Ángel Arturo Rendón-Castro
Dante Mújica-Vargas
Antonio Luna-Álvarez
Jean Marie Vianney Kinani
Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
Entropy
noise filtering
redescending M-estimator
image processing
multiplicative noise
additive noise
impulsive noise
title Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_full Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_fullStr Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_full_unstemmed Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_short Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_sort enhancing image quality via robust noise filtering using redescending m estimators
topic noise filtering
redescending M-estimator
image processing
multiplicative noise
additive noise
impulsive noise
url https://www.mdpi.com/1099-4300/25/8/1176
work_keys_str_mv AT angelarturorendoncastro enhancingimagequalityviarobustnoisefilteringusingredescendingmestimators
AT dantemujicavargas enhancingimagequalityviarobustnoisefilteringusingredescendingmestimators
AT antoniolunaalvarez enhancingimagequalityviarobustnoisefilteringusingredescendingmestimators
AT jeanmarievianneykinani enhancingimagequalityviarobustnoisefilteringusingredescendingmestimators