Estimating glass transition temperature and related dynamics of molecular glass formers combining artificial neural networks and disordered systems theory

Glass transition temperature and related dynamics play an essential role in amorphous materials research since many of their properties and functionalities depend on molecular mobility. However, the temperature dependence of the structural relaxation time for a given glass former is only experimenta...

Full description

Bibliographic Details
Main Authors: Claudia Borredon, Luis A. Miccio, Anh D. Phan, Gustavo A. Schwartz
Format: Article
Language:English
Published: Elsevier 2022-09-01
Series:Journal of Non-Crystalline Solids: X
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590159122000267
Description
Summary:Glass transition temperature and related dynamics play an essential role in amorphous materials research since many of their properties and functionalities depend on molecular mobility. However, the temperature dependence of the structural relaxation time for a given glass former is only experimentally accessible after synthesizing it, implying a time-consuming and costly process. In this work, we propose combining artificial neural networks and disordered systems theory to estimate the glass transition temperature and the temperature dependence of the main relaxation time based on the knowledge of the molecule's chemical structure. This approach provides a way to assess the dynamics of molecular glass formers, with reasonable accuracy, even before synthesizing them. We expect this methodology to boost industrial development, save time and resources, and accelerate the scientific understanding of structure-properties relationships.
ISSN:2590-1591