Intracellular Na<sup>+</sup> Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An <i>In Silico</i> Analysis

<i>Background</i>: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart’s primary pacemaker, are incompletely understood. Electrical and Ca<sup>2+</sup>-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging,...

Full description

Bibliographic Details
Main Authors: Stefano Morotti, Haibo Ni, Colin H. Peters, Christian Rickert, Ameneh Asgari-Targhi, Daisuke Sato, Alexey V. Glukhov, Catherine Proenza, Eleonora Grandi
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/11/5645
_version_ 1797532629035122688
author Stefano Morotti
Haibo Ni
Colin H. Peters
Christian Rickert
Ameneh Asgari-Targhi
Daisuke Sato
Alexey V. Glukhov
Catherine Proenza
Eleonora Grandi
author_facet Stefano Morotti
Haibo Ni
Colin H. Peters
Christian Rickert
Ameneh Asgari-Targhi
Daisuke Sato
Alexey V. Glukhov
Catherine Proenza
Eleonora Grandi
author_sort Stefano Morotti
collection DOAJ
description <i>Background</i>: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart’s primary pacemaker, are incompletely understood. Electrical and Ca<sup>2+</sup>-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na<sup>+</sup>]<sub>i</sub> is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na<sup>+</sup> homeostasis in SAN pacemaking and test whether [Na<sup>+</sup>]<sub>i</sub> dysregulation may contribute to SAN dysfunction. <i>Methods</i>: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na<sup>+</sup> entry (Na<sup>+</sup>/Ca<sup>2+</sup> exchanger, NCX) and removal (Na<sup>+</sup>/K<sup>+</sup> ATPase, NKA). <i>Results</i>: We found that changes in intracellular Na<sup>+</sup> homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca<sup>2+</sup> and membrane potential clocks underlying SAN firing. <i>Conclusions</i>: Our study generates new testable predictions and insight linking Na<sup>+</sup> homeostasis to Ca<sup>2+</sup> handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.
first_indexed 2024-03-10T11:02:58Z
format Article
id doaj.art-f2077e3616a44d1e9eb72fefda775da6
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-10T11:02:58Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-f2077e3616a44d1e9eb72fefda775da62023-11-21T21:25:12ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672021-05-012211564510.3390/ijms22115645Intracellular Na<sup>+</sup> Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An <i>In Silico</i> AnalysisStefano Morotti0Haibo Ni1Colin H. Peters2Christian Rickert3Ameneh Asgari-Targhi4Daisuke Sato5Alexey V. Glukhov6Catherine Proenza7Eleonora Grandi8Department of Pharmacology, University of California Davis, Davis, CA 95616, USADepartment of Pharmacology, University of California Davis, Davis, CA 95616, USADepartment of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USADepartment of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USADepartment of Pharmacology, University of California Davis, Davis, CA 95616, USADepartment of Pharmacology, University of California Davis, Davis, CA 95616, USADepartment of Medicine, Cardiovascular Medicine, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI 53705, USADepartment of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USADepartment of Pharmacology, University of California Davis, Davis, CA 95616, USA<i>Background</i>: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart’s primary pacemaker, are incompletely understood. Electrical and Ca<sup>2+</sup>-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na<sup>+</sup>]<sub>i</sub> is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na<sup>+</sup> homeostasis in SAN pacemaking and test whether [Na<sup>+</sup>]<sub>i</sub> dysregulation may contribute to SAN dysfunction. <i>Methods</i>: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na<sup>+</sup> entry (Na<sup>+</sup>/Ca<sup>2+</sup> exchanger, NCX) and removal (Na<sup>+</sup>/K<sup>+</sup> ATPase, NKA). <i>Results</i>: We found that changes in intracellular Na<sup>+</sup> homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca<sup>2+</sup> and membrane potential clocks underlying SAN firing. <i>Conclusions</i>: Our study generates new testable predictions and insight linking Na<sup>+</sup> homeostasis to Ca<sup>2+</sup> handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.https://www.mdpi.com/1422-0067/22/11/5645sodium homeostasissodium/potassium pumpsodium/calcium exchangersinoatrial nodecoupled-clock systemcardiomyocyte
spellingShingle Stefano Morotti
Haibo Ni
Colin H. Peters
Christian Rickert
Ameneh Asgari-Targhi
Daisuke Sato
Alexey V. Glukhov
Catherine Proenza
Eleonora Grandi
Intracellular Na<sup>+</sup> Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An <i>In Silico</i> Analysis
International Journal of Molecular Sciences
sodium homeostasis
sodium/potassium pump
sodium/calcium exchanger
sinoatrial node
coupled-clock system
cardiomyocyte
title Intracellular Na<sup>+</sup> Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An <i>In Silico</i> Analysis
title_full Intracellular Na<sup>+</sup> Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An <i>In Silico</i> Analysis
title_fullStr Intracellular Na<sup>+</sup> Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An <i>In Silico</i> Analysis
title_full_unstemmed Intracellular Na<sup>+</sup> Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An <i>In Silico</i> Analysis
title_short Intracellular Na<sup>+</sup> Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An <i>In Silico</i> Analysis
title_sort intracellular na sup sup modulates pacemaking activity in murine sinoatrial node myocytes an i in silico i analysis
topic sodium homeostasis
sodium/potassium pump
sodium/calcium exchanger
sinoatrial node
coupled-clock system
cardiomyocyte
url https://www.mdpi.com/1422-0067/22/11/5645
work_keys_str_mv AT stefanomorotti intracellularnasupsupmodulatespacemakingactivityinmurinesinoatrialnodemyocytesaniinsilicoianalysis
AT haiboni intracellularnasupsupmodulatespacemakingactivityinmurinesinoatrialnodemyocytesaniinsilicoianalysis
AT colinhpeters intracellularnasupsupmodulatespacemakingactivityinmurinesinoatrialnodemyocytesaniinsilicoianalysis
AT christianrickert intracellularnasupsupmodulatespacemakingactivityinmurinesinoatrialnodemyocytesaniinsilicoianalysis
AT amenehasgaritarghi intracellularnasupsupmodulatespacemakingactivityinmurinesinoatrialnodemyocytesaniinsilicoianalysis
AT daisukesato intracellularnasupsupmodulatespacemakingactivityinmurinesinoatrialnodemyocytesaniinsilicoianalysis
AT alexeyvglukhov intracellularnasupsupmodulatespacemakingactivityinmurinesinoatrialnodemyocytesaniinsilicoianalysis
AT catherineproenza intracellularnasupsupmodulatespacemakingactivityinmurinesinoatrialnodemyocytesaniinsilicoianalysis
AT eleonoragrandi intracellularnasupsupmodulatespacemakingactivityinmurinesinoatrialnodemyocytesaniinsilicoianalysis