Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy

Abstract Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformi...

Full description

Bibliographic Details
Main Authors: Patrick R. Whelan, Domenico De Fazio, Iwona Pasternak, Joachim D. Thomsen, Steffen Zelzer, Martin O. Mikkelsen, Timothy J. Booth, Lars Diekhöner, Ugo Sassi, Duncan Johnstone, Paul A. Midgley, Wlodek Strupinski, Peter U. Jepsen, Andrea C. Ferrari, Peter Bøggild
Format: Article
Language:English
Published: Nature Portfolio 2024-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-51548-z
_version_ 1797274836306755584
author Patrick R. Whelan
Domenico De Fazio
Iwona Pasternak
Joachim D. Thomsen
Steffen Zelzer
Martin O. Mikkelsen
Timothy J. Booth
Lars Diekhöner
Ugo Sassi
Duncan Johnstone
Paul A. Midgley
Wlodek Strupinski
Peter U. Jepsen
Andrea C. Ferrari
Peter Bøggild
author_facet Patrick R. Whelan
Domenico De Fazio
Iwona Pasternak
Joachim D. Thomsen
Steffen Zelzer
Martin O. Mikkelsen
Timothy J. Booth
Lars Diekhöner
Ugo Sassi
Duncan Johnstone
Paul A. Midgley
Wlodek Strupinski
Peter U. Jepsen
Andrea C. Ferrari
Peter Bøggild
author_sort Patrick R. Whelan
collection DOAJ
description Abstract Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude–Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects. We compare the charge carrier mean free path determined by THz-TDS with the average defect distance assessed by Raman spectroscopy, and the grain boundary dimensions as determined by transmission electron microscopy. The results indicate that even small angle orientation variations below 5° within graphene grains influence the scattering behavior, consistent with significant backscattering contributions from grain boundaries.
first_indexed 2024-03-07T15:03:50Z
format Article
id doaj.art-f221f236947e4dd5af7fcbd8f77ad5cc
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-03-07T15:03:50Z
publishDate 2024-02-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-f221f236947e4dd5af7fcbd8f77ad5cc2024-03-05T19:00:27ZengNature PortfolioScientific Reports2045-23222024-02-011411910.1038/s41598-024-51548-zMapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopyPatrick R. Whelan0Domenico De Fazio1Iwona Pasternak2Joachim D. Thomsen3Steffen Zelzer4Martin O. Mikkelsen5Timothy J. Booth6Lars Diekhöner7Ugo Sassi8Duncan Johnstone9Paul A. Midgley10Wlodek Strupinski11Peter U. Jepsen12Andrea C. Ferrari13Peter Bøggild14DTU Physics, Technical University of DenmarkCambridge Graphene Centre, University of CambridgeFaculty of Physics, Warsaw University of TechnologyDTU Physics, Technical University of DenmarkDepartment of Materials and Production, Aalborg UniversityDepartment of Materials and Production, Aalborg UniversityDTU Physics, Technical University of DenmarkDepartment of Materials and Production, Aalborg UniversityCambridge Graphene Centre, University of CambridgeDepartment of Materials Science and Metallurgy, University of CambridgeDepartment of Materials Science and Metallurgy, University of CambridgeFaculty of Physics, Warsaw University of TechnologyCenter for Nanostructured Graphene (CNG), Technical University of DenmarkCambridge Graphene Centre, University of CambridgeDTU Physics, Technical University of DenmarkAbstract Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude–Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects. We compare the charge carrier mean free path determined by THz-TDS with the average defect distance assessed by Raman spectroscopy, and the grain boundary dimensions as determined by transmission electron microscopy. The results indicate that even small angle orientation variations below 5° within graphene grains influence the scattering behavior, consistent with significant backscattering contributions from grain boundaries.https://doi.org/10.1038/s41598-024-51548-z
spellingShingle Patrick R. Whelan
Domenico De Fazio
Iwona Pasternak
Joachim D. Thomsen
Steffen Zelzer
Martin O. Mikkelsen
Timothy J. Booth
Lars Diekhöner
Ugo Sassi
Duncan Johnstone
Paul A. Midgley
Wlodek Strupinski
Peter U. Jepsen
Andrea C. Ferrari
Peter Bøggild
Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy
Scientific Reports
title Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy
title_full Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy
title_fullStr Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy
title_full_unstemmed Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy
title_short Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy
title_sort mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy
url https://doi.org/10.1038/s41598-024-51548-z
work_keys_str_mv AT patrickrwhelan mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT domenicodefazio mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT iwonapasternak mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT joachimdthomsen mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT steffenzelzer mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT martinomikkelsen mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT timothyjbooth mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT larsdiekhoner mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT ugosassi mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT duncanjohnstone mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT paulamidgley mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT wlodekstrupinski mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT peterujepsen mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT andreacferrari mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy
AT peterbøggild mappingnanoscalecarrierconfinementinpolycrystallinegraphenebyterahertzspectroscopy