Evaluation of Tumor Control and Normal Tissue Complication Probability in Head and Neck Cancers with Different Sources of Radiation: A Comparative Study
Introduction: The ultimate goal of radiation treatment planning is to yield a high tumor control probability (TCP) with a low normal tissue complication probability (NTCP). Historically dose volume histogram (DVH) with only volumetric dose distribution was utilized as a popular tool for plan evalua...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Mashhad University of Medical Sciences
2017-09-01
|
Series: | Iranian Journal of Medical Physics |
Subjects: | |
Online Access: | http://ijmp.mums.ac.ir/article_8659_60a11c8aeac6838975efee03fc19575e.pdf |
Summary: | Introduction: The ultimate goal of radiation treatment planning is to yield a high tumor control probability (TCP) with a low normal tissue complication probability (NTCP). Historically dose volume histogram (DVH) with only volumetric dose distribution was utilized as a popular tool for plan evaluation hence present study aimed to compare the radiobiological effectiveness of the cobalt-60 (Co-60) gamma photon and 6MV X-rays of linear accelerators (Linac) in the radiotherapy of head and neck tumors. Materials and Methods: TCP and NTCP were calculated using DVH through the BIOPLAN software developed by Sanchez-Nieto and Nahum . The treatment planning was performed for all the patients using both treatment modalities (i.e., Co-60 and 6 MV Linac). The TCP was also manually calculated using a mathematical formula proposed by Brenner’s et al. Results: The average TCP calculated by the BIOPLAN for Co-60 and 6 MV X-rays were 44.6% and 60.8%, respectively. Furthermore, the average NTCPs obtained for the organ at risk, namely optic nerve, for Co-60 and 6 MV X-ray were 0.24 % and 0.03 %, respectively. Regarding the spinal cord, the average NTCPs for Co-60 gamma photon and 6 MV X-ray of Linac were 0.05 % and 0.002%, respectively. Conclusion: As the findings of the present study indicated, Co-60 unit could provide comparable TCP along with minimal NTCP, compared to the high-cost technologies of Linac. The design of treatment plans based on the radiobiological parameters facilitated the judicious choice of physical parameters for the achievement of high TCP and low NTCP. |
---|---|
ISSN: | 2345-3672 2345-3672 |