Testing quark mixing in minimal left–right symmetric models with b-tags at the LHC

Motivated by a hint in a CMS search for right-handed W-bosons in eejj final states, we propose an experimental test of quark-mixing matrices in a general left–right symmetric model, based on counting the numbers of b-tags from right-handed W-boson hadronic decays. We find that, with our test, differ...

Full description

Bibliographic Details
Main Authors: Andrew Fowlie, Luca Marzola
Format: Article
Language:English
Published: Elsevier 2014-12-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321314003071
Description
Summary:Motivated by a hint in a CMS search for right-handed W-bosons in eejj final states, we propose an experimental test of quark-mixing matrices in a general left–right symmetric model, based on counting the numbers of b-tags from right-handed W-boson hadronic decays. We find that, with our test, differences between left- and right-handed quark-mixing matrices could be detected at the LHC with s=14 TeV. With an integrated luminosity of about 20/fb, our test is sensitive to right-handed quark-mixing angles as small as about 30° and with 3000/fb, our test's sensitivity improves to right-handed mixing angles as small as about 7.5°. Our test's sensitivity might be further enhanced by tuning b-tagging efficiency against purity.
ISSN:0550-3213
1873-1562