Hydrogenation Properties of <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb), LaGa<sub>2</sub>, LaSi<sub>2</sub> and the Crystal Structure of LaGa<sub>2</sub>H<sub>0.71(2)</sub>

Many Zintl phases take up hydrogen and form hydrides. Hydrogen atoms occupy interstitial sites formed by alkali or alkaline earth metals and/or bind covalently to the polyanions. The latter is the case for polyanionic hydrides like Sr<i>Tr</i><sub>2</sub>H<sub>2</sub...

Full description

Bibliographic Details
Main Authors: Anton Werwein, Christopher Benndorf, Marko Bertmer, Alexandra Franz, Oliver Oeckler, Holger Kohlmann
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/9/4/193
_version_ 1828348253514498048
author Anton Werwein
Christopher Benndorf
Marko Bertmer
Alexandra Franz
Oliver Oeckler
Holger Kohlmann
author_facet Anton Werwein
Christopher Benndorf
Marko Bertmer
Alexandra Franz
Oliver Oeckler
Holger Kohlmann
author_sort Anton Werwein
collection DOAJ
description Many Zintl phases take up hydrogen and form hydrides. Hydrogen atoms occupy interstitial sites formed by alkali or alkaline earth metals and/or bind covalently to the polyanions. The latter is the case for polyanionic hydrides like Sr<i>Tr</i><sub>2</sub>H<sub>2</sub> (<i>Tr</i> = Al, Ga) with slightly puckered honeycomb-like polyanions decorated with hydrogen atoms. This study addresses the hydrogenation behavior of <i>LnTr</i><sub>2</sub>, where the lanthanide metals <i>Ln</i> introduce one additional valence electron. Hydrogenation reactions were performed in autoclaves and followed by thermal analysis up to 5.0 MPa hydrogen gas pressure. Products were analyzed by powder X-ray and neutron diffraction, transmission electron microscopy, and NMR spectroscopy. Phases <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb) decompose into binary hydrides and aluminium-rich intermetallics upon hydrogenation, while LaGa<sub>2</sub> forms a ternary hydride LaGa<sub>2</sub>H<sub>0.71(2)</sub>. Hydrogen atoms are statistically distributed over two kinds of trigonal-bipyramidal La<sub>3</sub>Ga<sub>2</sub> interstitials with 67% and 4% occupancy, respectively. Ga-H distances (2.4992(2) &#197;) are considerably longer than in polyanionic hydrides and not indicative of covalent bonding. <sup>2</sup>H solid-state NMR spectroscopy and theoretical calculations on Density Functional Theory (DFT) level confirm that LaGa<sub>2</sub>H<sub>0.7</sub> is a typical interstitial metallic hydride.
first_indexed 2024-04-14T00:51:17Z
format Article
id doaj.art-f24219780ff54d9ba3a9e9599afd3268
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-04-14T00:51:17Z
publishDate 2019-04-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-f24219780ff54d9ba3a9e9599afd32682022-12-22T02:21:47ZengMDPI AGCrystals2073-43522019-04-019419310.3390/cryst9040193cryst9040193Hydrogenation Properties of <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb), LaGa<sub>2</sub>, LaSi<sub>2</sub> and the Crystal Structure of LaGa<sub>2</sub>H<sub>0.71(2)</sub>Anton Werwein0Christopher Benndorf1Marko Bertmer2Alexandra Franz3Oliver Oeckler4Holger Kohlmann5Leipzig University, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, GermanyLeipzig University; Institute of Mineralogy, Crystallography and Materials Science, Scharnhorststraße 20, 04275 Leipzig, GermanyLeipzig University, Felix Bloch Institute for Solid State Physics, Linnéstraße 5, 04103 Leipzig, GermanyHelmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, GermanyLeipzig University; Institute of Mineralogy, Crystallography and Materials Science, Scharnhorststraße 20, 04275 Leipzig, GermanyLeipzig University, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, GermanyMany Zintl phases take up hydrogen and form hydrides. Hydrogen atoms occupy interstitial sites formed by alkali or alkaline earth metals and/or bind covalently to the polyanions. The latter is the case for polyanionic hydrides like Sr<i>Tr</i><sub>2</sub>H<sub>2</sub> (<i>Tr</i> = Al, Ga) with slightly puckered honeycomb-like polyanions decorated with hydrogen atoms. This study addresses the hydrogenation behavior of <i>LnTr</i><sub>2</sub>, where the lanthanide metals <i>Ln</i> introduce one additional valence electron. Hydrogenation reactions were performed in autoclaves and followed by thermal analysis up to 5.0 MPa hydrogen gas pressure. Products were analyzed by powder X-ray and neutron diffraction, transmission electron microscopy, and NMR spectroscopy. Phases <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb) decompose into binary hydrides and aluminium-rich intermetallics upon hydrogenation, while LaGa<sub>2</sub> forms a ternary hydride LaGa<sub>2</sub>H<sub>0.71(2)</sub>. Hydrogen atoms are statistically distributed over two kinds of trigonal-bipyramidal La<sub>3</sub>Ga<sub>2</sub> interstitials with 67% and 4% occupancy, respectively. Ga-H distances (2.4992(2) &#197;) are considerably longer than in polyanionic hydrides and not indicative of covalent bonding. <sup>2</sup>H solid-state NMR spectroscopy and theoretical calculations on Density Functional Theory (DFT) level confirm that LaGa<sub>2</sub>H<sub>0.7</sub> is a typical interstitial metallic hydride.https://www.mdpi.com/2073-4352/9/4/193Zintl phasesmetal hydridesinterstitial hydridesZintl phase hydrideslanthanidespowder diffractionneutron diffractiondeuteridesthermal analysissolid-state NMR
spellingShingle Anton Werwein
Christopher Benndorf
Marko Bertmer
Alexandra Franz
Oliver Oeckler
Holger Kohlmann
Hydrogenation Properties of <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb), LaGa<sub>2</sub>, LaSi<sub>2</sub> and the Crystal Structure of LaGa<sub>2</sub>H<sub>0.71(2)</sub>
Crystals
Zintl phases
metal hydrides
interstitial hydrides
Zintl phase hydrides
lanthanides
powder diffraction
neutron diffraction
deuterides
thermal analysis
solid-state NMR
title Hydrogenation Properties of <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb), LaGa<sub>2</sub>, LaSi<sub>2</sub> and the Crystal Structure of LaGa<sub>2</sub>H<sub>0.71(2)</sub>
title_full Hydrogenation Properties of <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb), LaGa<sub>2</sub>, LaSi<sub>2</sub> and the Crystal Structure of LaGa<sub>2</sub>H<sub>0.71(2)</sub>
title_fullStr Hydrogenation Properties of <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb), LaGa<sub>2</sub>, LaSi<sub>2</sub> and the Crystal Structure of LaGa<sub>2</sub>H<sub>0.71(2)</sub>
title_full_unstemmed Hydrogenation Properties of <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb), LaGa<sub>2</sub>, LaSi<sub>2</sub> and the Crystal Structure of LaGa<sub>2</sub>H<sub>0.71(2)</sub>
title_short Hydrogenation Properties of <i>Ln</i>Al<sub>2</sub> (<i>Ln</i> = La, Eu, Yb), LaGa<sub>2</sub>, LaSi<sub>2</sub> and the Crystal Structure of LaGa<sub>2</sub>H<sub>0.71(2)</sub>
title_sort hydrogenation properties of i ln i al sub 2 sub i ln i la eu yb laga sub 2 sub lasi sub 2 sub and the crystal structure of laga sub 2 sub h sub 0 71 2 sub
topic Zintl phases
metal hydrides
interstitial hydrides
Zintl phase hydrides
lanthanides
powder diffraction
neutron diffraction
deuterides
thermal analysis
solid-state NMR
url https://www.mdpi.com/2073-4352/9/4/193
work_keys_str_mv AT antonwerwein hydrogenationpropertiesofilnialsub2subilnilaeuyblagasub2sublasisub2subandthecrystalstructureoflagasub2subhsub0712sub
AT christopherbenndorf hydrogenationpropertiesofilnialsub2subilnilaeuyblagasub2sublasisub2subandthecrystalstructureoflagasub2subhsub0712sub
AT markobertmer hydrogenationpropertiesofilnialsub2subilnilaeuyblagasub2sublasisub2subandthecrystalstructureoflagasub2subhsub0712sub
AT alexandrafranz hydrogenationpropertiesofilnialsub2subilnilaeuyblagasub2sublasisub2subandthecrystalstructureoflagasub2subhsub0712sub
AT oliveroeckler hydrogenationpropertiesofilnialsub2subilnilaeuyblagasub2sublasisub2subandthecrystalstructureoflagasub2subhsub0712sub
AT holgerkohlmann hydrogenationpropertiesofilnialsub2subilnilaeuyblagasub2sublasisub2subandthecrystalstructureoflagasub2subhsub0712sub