Some Fixed Point Results on Relational Quasi Partial Metric Spaces and Application to Non-Linear Matrix Equations

We introduce a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><mi>ϱ</mi></msub></semantics></math></inline-formula>-implicit contractive condition...

Full description

Bibliographic Details
Main Authors: Reena Jain, Hemant Kumar Nashine, Zoran Kadelburg
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/6/993
Description
Summary:We introduce a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><mi>ϱ</mi></msub></semantics></math></inline-formula>-implicit contractive condition by an implicit relation on relational quasi partial metric spaces and establish new (unique) fixed point results and periodic point results based on it. We justify the results by two suitable examples and compare with them related work. We discuss sufficient conditions ensuring the existence of a unique positive definite solution of the non-linear matrix equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">U</mi><mo>=</mo><mi mathvariant="script">B</mi><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></msubsup><msubsup><mi mathvariant="script">A</mi><mrow><mi>i</mi></mrow><mo>*</mo></msubsup><mi mathvariant="script">G</mi><mrow><mo>(</mo><mi mathvariant="script">U</mi><mo>)</mo></mrow><msub><mi mathvariant="script">A</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">B</mi></semantics></math></inline-formula> is an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> Hermitian positive definite matrix, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">A</mi><mn>1</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">A</mi><mn>2</mn></msub></semantics></math></inline-formula>, … <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">A</mi><mi>m</mi></msub></semantics></math></inline-formula> are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrices, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula> is a non-linear self-mapping of the set of all Hermitian matrices which is continuous in the trace norm. Two examples (with randomly generated matrices and complex matrices, respectively) are given, together with convergence and error analysis, as well as average CPU time analysis and visualization of solution in surface plot.
ISSN:2073-8994