Vacuum ultraviolet field emission lamp utilizing KMgF3 thin film phosphor

We demonstrated a field emission lamp by employing a KMgF3 thin film as a solid-state vacuum ultraviolet phosphor. The output power of the lamp was 2 μW at an extraction voltage of 800 V and acceleration voltage of 1800 V, and it operated at wavelengths 140–220 nm, which is the shortest wavelength r...

Full description

Bibliographic Details
Main Authors: Masahiro Yanagihara, Mohd Zamri Yusop, Masaki Tanemura, Shingo Ono, Tomohito Nagami, Kentaro Fukuda, Toshihisa Suyama, Yuui Yokota, Takayuki Yanagida, Akira Yoshikawa
Format: Article
Language:English
Published: AIP Publishing LLC 2014-04-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/1.4871915
Description
Summary:We demonstrated a field emission lamp by employing a KMgF3 thin film as a solid-state vacuum ultraviolet phosphor. The output power of the lamp was 2 μW at an extraction voltage of 800 V and acceleration voltage of 1800 V, and it operated at wavelengths 140–220 nm, which is the shortest wavelength reported for solid-state phosphor lamps. The thin film was grown on MgF2 substrate by pulsed laser deposition. Its conversion efficiency was almost equivalent to a single KMgF3 crystal, and it had emission peaks of 155 and 180 nm in wavelength. These peaks are attributed to transitions from the valence anion band to the outermost core cation band and correspond well with emission peaks previously reported from the crystal. Additionally, we obtained a thermal-free and low-power consumption lamp by employing carbon nanofibres (CNFs) as a field emitter. A CNF emitter was easily grown at room temperature and can be grown on flexible materials.
ISSN:2166-532X