Asymptotic properties of the von Foerster-Lasota equation and indices of Orlicz spaces

This article concerns the asymptotic behaviour of the dynamical systems induced by the von Foerster-Lasota equation. We study chaoticity of the system in the sense of Devaney and its strong stability in Orlicz spaces generated by any phi-function. We apply Matuszewska-Orlicz indices to a descrip...

Full description

Bibliographic Details
Main Authors: Antoni Leon Dawidowicz, Anna Poskrobko
Format: Article
Language:English
Published: Texas State University 2016-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/300/abstr.html
_version_ 1818650153182035968
author Antoni Leon Dawidowicz
Anna Poskrobko
author_facet Antoni Leon Dawidowicz
Anna Poskrobko
author_sort Antoni Leon Dawidowicz
collection DOAJ
description This article concerns the asymptotic behaviour of the dynamical systems induced by the von Foerster-Lasota equation. We study chaoticity of the system in the sense of Devaney and its strong stability in Orlicz spaces generated by any phi-function. We apply Matuszewska-Orlicz indices to a description of asymptotic properties considered semigroup.
first_indexed 2024-12-17T01:45:41Z
format Article
id doaj.art-f2602805524a4104b6990093eecfe934
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-17T01:45:41Z
publishDate 2016-11-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-f2602805524a4104b6990093eecfe9342022-12-21T22:08:12ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912016-11-012016300,19Asymptotic properties of the von Foerster-Lasota equation and indices of Orlicz spacesAntoni Leon Dawidowicz0Anna Poskrobko1 Jagiellonian Univ., Krakow, Poland Bialystok Univ. of Technology, Bialystok, Poland This article concerns the asymptotic behaviour of the dynamical systems induced by the von Foerster-Lasota equation. We study chaoticity of the system in the sense of Devaney and its strong stability in Orlicz spaces generated by any phi-function. We apply Matuszewska-Orlicz indices to a description of asymptotic properties considered semigroup.http://ejde.math.txstate.edu/Volumes/2016/300/abstr.htmlvon Foerster-Lasota equationstabilitychaosOrlicz spaceMatuszewska-Orlicz indices
spellingShingle Antoni Leon Dawidowicz
Anna Poskrobko
Asymptotic properties of the von Foerster-Lasota equation and indices of Orlicz spaces
Electronic Journal of Differential Equations
von Foerster-Lasota equation
stability
chaos
Orlicz space
Matuszewska-Orlicz indices
title Asymptotic properties of the von Foerster-Lasota equation and indices of Orlicz spaces
title_full Asymptotic properties of the von Foerster-Lasota equation and indices of Orlicz spaces
title_fullStr Asymptotic properties of the von Foerster-Lasota equation and indices of Orlicz spaces
title_full_unstemmed Asymptotic properties of the von Foerster-Lasota equation and indices of Orlicz spaces
title_short Asymptotic properties of the von Foerster-Lasota equation and indices of Orlicz spaces
title_sort asymptotic properties of the von foerster lasota equation and indices of orlicz spaces
topic von Foerster-Lasota equation
stability
chaos
Orlicz space
Matuszewska-Orlicz indices
url http://ejde.math.txstate.edu/Volumes/2016/300/abstr.html
work_keys_str_mv AT antonileondawidowicz asymptoticpropertiesofthevonfoersterlasotaequationandindicesoforliczspaces
AT annaposkrobko asymptoticpropertiesofthevonfoersterlasotaequationandindicesoforliczspaces