Intelligent Framework Using IoT-Based WSNs for Wildfire Detection

IoT-based WSNs have proved their significance in delivering critical information pertaining to hostile applications such as Wildfire Detection (WD) with the least possible delay. However, the sensor nodes deployed in such networks suffer from the perturbing concern of limited energy resources, restr...

Full description

Bibliographic Details
Main Authors: Sandeep Verma, Satnam Kaur, Danda B. Rawat, Chen Xi, Linss T. Alex, Noor Zaman Jhanjhi
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9358205/
Description
Summary:IoT-based WSNs have proved their significance in delivering critical information pertaining to hostile applications such as Wildfire Detection (WD) with the least possible delay. However, the sensor nodes deployed in such networks suffer from the perturbing concern of limited energy resources, restricting their potential in the successful detection of wildfire. To extenuate this concern, we propose an intelligent framework, Sleep scheduling-based Energy Optimized Framework (SEOF), that works in two folds. Firstly, we propose an energy-efficient Cluster Head (CH) selection employing a recently developed meta-heuristic method, Tunicate Swarm Algorithm (TSA), that optimizes the five novel fitness parameters by integrating them into its weighted fitness function. Secondly, we perform a sleep scheduling of closely-located sensor nodes based on the distance threshold calculated through a set of experiments. Sleep scheduling methodology plays a pivotal role in abating the number of data transmissions in SEOF. Finally, we simulate SEOF in MATLAB under different scenarios to examine its efficacy for the various performance metrics and scalability features. Our empirical results prove that SEOF has ameliorated the network stability period for two different scenarios of network parameters by 35.3% and 216% vis-à-vis CIRP.
ISSN:2169-3536