On generation of a limit cycle from a separatrix loop of a sewn saddle-node

The article considers dynamical systems on the plane, defined by continuous piecewise smooth vector fields. Such systems are used as mathematical models of real processes with switching. An important task is to find the conditions for the generation of periodic trajectories when the parameters chang...

Full description

Bibliographic Details
Main Author: Roitenberg, Vladimir Shleymovich
Format: Article
Language:English
Published: Saratov State University 2022-05-01
Series:Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
Subjects:
Online Access:https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/159-168-roitenberg.pdf
_version_ 1811231832703762432
author Roitenberg, Vladimir Shleymovich
author_facet Roitenberg, Vladimir Shleymovich
author_sort Roitenberg, Vladimir Shleymovich
collection DOAJ
description The article considers dynamical systems on the plane, defined by continuous piecewise smooth vector fields. Such systems are used as mathematical models of real processes with switching. An important task is to find the conditions for the generation of periodic trajectories when the parameters change. The paper describes the bifurcation of the birth of a periodic trajectory from the loop of the separatrix of a sewn saddle-node — an analogue of the classical bifurcation of the separatrix loop of a saddle-node of a smooth dynamical system. Consider a one-parameter family $\{ X_\varepsilon  \} $  of continuous piecewise-smooth vector fields on the plane. Let $z^0 $ be a point on the switching line. Let's choose the local coordinates $x,y$ in which $z^0 $ has zero coordinates, and the switching line is given by the equation $y = 0$. Let the vector field $X_0 $  in a semi-neighborhood  $y \ge 0$ ($y \le 0$) coincide with a smooth vector field $X_0^ +  $ ($X_0^ -  $), for which the point $z^0 $ is a stable rough node (rough saddle), and the proper subspaces of the matrix of the linear part of the field in $z^0 $  do not coincide with the straight line $y = 0$. The singular point $z^0 $   is called a sewn saddle-node. There is a single trajectory $L_0 $  that is $\alpha $-limit to $z^0 $ — the outgoing separatrix of the point $z^0 $. It is assumed that $L_0 $  is also $\omega $-limit to $z^0$, and enters $z^0 $  in the leading direction of the node of the field $X_0^ +  $. For generic family, when the parameter $\varepsilon $ changes, the sewn saddle-node either splits into a rough node and a rough saddle, or disappears. In the paper it is proved that in the latter case the only periodic trajectory of the field $X_\varepsilon  $ is generated from the contour $L_0  \cup \{ z^0 \} $ — a stable limit cycle. 
first_indexed 2024-04-12T10:51:44Z
format Article
id doaj.art-f28ae4631d4f4d2d89622f72eac6ec79
institution Directory Open Access Journal
issn 1816-9791
2541-9005
language English
last_indexed 2024-04-12T10:51:44Z
publishDate 2022-05-01
publisher Saratov State University
record_format Article
series Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
spelling doaj.art-f28ae4631d4f4d2d89622f72eac6ec792022-12-22T03:36:13ZengSaratov State UniversityИзвестия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика1816-97912541-90052022-05-0122215916810.18500/1816-9791-2022-22-2-159-168On generation of a limit cycle from a separatrix loop of a sewn saddle-nodeRoitenberg, Vladimir Shleymovich0Yaroslavl State Technical University, 88 Moskovskii prospekt, Yaroslavl 150023, RussiaThe article considers dynamical systems on the plane, defined by continuous piecewise smooth vector fields. Such systems are used as mathematical models of real processes with switching. An important task is to find the conditions for the generation of periodic trajectories when the parameters change. The paper describes the bifurcation of the birth of a periodic trajectory from the loop of the separatrix of a sewn saddle-node — an analogue of the classical bifurcation of the separatrix loop of a saddle-node of a smooth dynamical system. Consider a one-parameter family $\{ X_\varepsilon  \} $  of continuous piecewise-smooth vector fields on the plane. Let $z^0 $ be a point on the switching line. Let's choose the local coordinates $x,y$ in which $z^0 $ has zero coordinates, and the switching line is given by the equation $y = 0$. Let the vector field $X_0 $  in a semi-neighborhood  $y \ge 0$ ($y \le 0$) coincide with a smooth vector field $X_0^ +  $ ($X_0^ -  $), for which the point $z^0 $ is a stable rough node (rough saddle), and the proper subspaces of the matrix of the linear part of the field in $z^0 $  do not coincide with the straight line $y = 0$. The singular point $z^0 $   is called a sewn saddle-node. There is a single trajectory $L_0 $  that is $\alpha $-limit to $z^0 $ — the outgoing separatrix of the point $z^0 $. It is assumed that $L_0 $  is also $\omega $-limit to $z^0$, and enters $z^0 $  in the leading direction of the node of the field $X_0^ +  $. For generic family, when the parameter $\varepsilon $ changes, the sewn saddle-node either splits into a rough node and a rough saddle, or disappears. In the paper it is proved that in the latter case the only periodic trajectory of the field $X_\varepsilon  $ is generated from the contour $L_0  \cup \{ z^0 \} $ — a stable limit cycle. https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/159-168-roitenberg.pdfcontinuous piecewise smooth dynamical systemphase planebifurcationsewn saddle-nodelimit cycle
spellingShingle Roitenberg, Vladimir Shleymovich
On generation of a limit cycle from a separatrix loop of a sewn saddle-node
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
continuous piecewise smooth dynamical system
phase plane
bifurcation
sewn saddle-node
limit cycle
title On generation of a limit cycle from a separatrix loop of a sewn saddle-node
title_full On generation of a limit cycle from a separatrix loop of a sewn saddle-node
title_fullStr On generation of a limit cycle from a separatrix loop of a sewn saddle-node
title_full_unstemmed On generation of a limit cycle from a separatrix loop of a sewn saddle-node
title_short On generation of a limit cycle from a separatrix loop of a sewn saddle-node
title_sort on generation of a limit cycle from a separatrix loop of a sewn saddle node
topic continuous piecewise smooth dynamical system
phase plane
bifurcation
sewn saddle-node
limit cycle
url https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/159-168-roitenberg.pdf
work_keys_str_mv AT roitenbergvladimirshleymovich ongenerationofalimitcyclefromaseparatrixloopofasewnsaddlenode