Amperometric Low-Potential Detection of Malic Acid Using Single-Wall Carbon Nanotubes Based Electrodes
The electrocatalytical property of single-wall carbon nanotube (SWNT)modified electrode toward NADH detection was explored by cyclic voltammetry andamperometry techniques. The experimental results show that SWNT decrease theovervoltage required for oxidation of NADH (to 300 mV vs. Ag/AgCl) and this...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2008-03-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/8/3/1497/ |
Summary: | The electrocatalytical property of single-wall carbon nanotube (SWNT)modified electrode toward NADH detection was explored by cyclic voltammetry andamperometry techniques. The experimental results show that SWNT decrease theovervoltage required for oxidation of NADH (to 300 mV vs. Ag/AgCl) and this propertymake them suitable for dehydrogenases based biosensors. The behavior of the SWNTmodified biosensor for L-malic acid was studied as an example for dehydrogenasesbiosensor. The amperometric measurements indicate that malate dehydrogenase (MDH)can be strongly adsorbed on the surface of the SWNT-modified electrode to form anapproximate monolayer film. Enzyme immobilization in Nafion membrane can increasethe biosensor stability. A linear calibration curve was obtained for L-malic acidconcentrations between 0.2 and 1mM. |
---|---|
ISSN: | 1424-8220 |