Resonances in ultracold dipolar atomic and molecular gases
A previously developed approach for the numerical treatment of two particles that are confined in a finite optical-lattice potential and interact via an arbitrary isotropic interaction potential has been extended to incorporate an additional anisotropic dipole–dipole interaction (DDI). The interplay...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2015-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/17/6/065002 |
Summary: | A previously developed approach for the numerical treatment of two particles that are confined in a finite optical-lattice potential and interact via an arbitrary isotropic interaction potential has been extended to incorporate an additional anisotropic dipole–dipole interaction (DDI). The interplay of a model but realistic short-range Born–Oppenheimer potential and the DDI for two confined particles is investigated. A variation of the strength of the DDI leads to diverse resonance phenomena. In a harmonic confinement potential some resonances show similarities to s -wave scattering resonances while in an anharmonic trapping potential like the one of an optical lattice additional inelastic confinement-induced dipolar resonances occur. The latter are due to a coupling of the relative and center-of-mass motion caused by the anharmonicity of the external confinement. |
---|---|
ISSN: | 1367-2630 |