Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO<sub>2</sub> radicals using laser-induced fluorescence spectroscopy

<p>Laser-induced fluorescence (LIF) spectroscopy has been widely applied to fieldwork measurements of OH radicals and HO<span class="inline-formula"><sub>2</sub></span>, following conversion to OH, over a wide variety of conditions, on different platforms and...

Full description

Bibliographic Details
Main Authors: F. A. F. Winiberg, W. J. Warman, C. A. Brumby, G. Boustead, I. G. Bejan, T. H. Speak, D. E. Heard, D. Stone, P. W. Seakins
Format: Article
Language:English
Published: Copernicus Publications 2023-10-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/16/4375/2023/amt-16-4375-2023.pdf
_version_ 1797666065048666112
author F. A. F. Winiberg
F. A. F. Winiberg
W. J. Warman
C. A. Brumby
G. Boustead
I. G. Bejan
I. G. Bejan
T. H. Speak
D. E. Heard
D. Stone
P. W. Seakins
author_facet F. A. F. Winiberg
F. A. F. Winiberg
W. J. Warman
C. A. Brumby
G. Boustead
I. G. Bejan
I. G. Bejan
T. H. Speak
D. E. Heard
D. Stone
P. W. Seakins
author_sort F. A. F. Winiberg
collection DOAJ
description <p>Laser-induced fluorescence (LIF) spectroscopy has been widely applied to fieldwork measurements of OH radicals and HO<span class="inline-formula"><sub>2</sub></span>, following conversion to OH, over a wide variety of conditions, on different platforms and in simulation chambers. Conventional calibration of HO<span class="inline-formula"><sub><i>x</i></sub></span> (OH <span class="inline-formula">+</span> HO<span class="inline-formula"><sub>2</sub>)</span> instruments has mainly relied on a single method, generating known concentrations of HO<span class="inline-formula"><sub><i>x</i></sub></span> from H<span class="inline-formula"><sub>2</sub></span>O vapour photolysis in a flow of zero air impinging just outside the sample inlet (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>S</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub><mo>=</mo><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a8411aac0d8cf0a0c2528ae5c1f994f0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00001.svg" width="61pt" height="14pt" src="amt-16-4375-2023-ie00001.png"/></svg:svg></span></span>. [HO<span class="inline-formula"><sub><i>x</i></sub></span>], where <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>S</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="99adca0f196971c0ddf400f480a97d1a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00002.svg" width="24pt" height="14pt" src="amt-16-4375-2023-ie00002.png"/></svg:svg></span></span> is the observed signal and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c7441023ee7fbf1c8df9852f9fd20f77"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00003.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00003.png"/></svg:svg></span></span> is the calibration factor). The fluorescence assay by gaseous expansion (FAGE) apparatus designed for HO<span class="inline-formula"><sub><i>x</i></sub></span> measurements in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) at the University of Leeds has been used to examine the sensitivity of FAGE to external gas temperatures (266–348 K).</p> <p>The conventional calibration methods give the temperature dependence of <span class="inline-formula"><i>C</i><sub>OH</sub></span> (relative to the value at 293 K) of (<span class="inline-formula">0.0059±0.0015</span>) K<span class="inline-formula"><sup>−1</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ca01ee0763cb589d8d1068af425be367"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00004.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00004.png"/></svg:svg></span></span> of (<span class="inline-formula">0.014±0.013</span>) K<span class="inline-formula"><sup>−1</sup></span>. Errors are 2<span class="inline-formula"><i>σ</i></span>. <span class="inline-formula"><i>C</i><sub>OH</sub></span> was also determined by observing the decay of hydrocarbons (typically cyclohexane) caused by OH reactions giving <span class="inline-formula"><i>C</i><sub>OH</sub></span> (again, relative to the value at 293 K) of (<span class="inline-formula">0.0038±0.0007</span>) K<span class="inline-formula"><sup>−1</sup></span>. Additionally, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="8d3dc85ed63faac906e8fe6b34c5328f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00005.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00005.png"/></svg:svg></span></span> was determined based on the second-order kinetics of HO<span class="inline-formula"><sub>2</sub></span> recombination with the temperature dependence of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="97ebeb954ff4aa96afdf766f469eb2e0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00006.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00006.png"/></svg:svg></span></span>, relative to 293 K being (<span class="inline-formula">0.0064±0.0034</span>) K<span class="inline-formula"><sup>−1</sup></span>.</p> <p>The temperature dependence of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M29" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5e1d7487bc9fb12936ba6d5302861956"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00007.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00007.png"/></svg:svg></span></span> depends on the HO<span class="inline-formula"><sub><i>x</i></sub></span> number density, quenching, the relative population of the probed OH rotational level and HO<span class="inline-formula"><sub><i>x</i></sub></span> transmission from the inlet to the detection axis. The first three terms can be calculated and, in combination with the measured values of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M32" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="98fcb6c7ca6fb710f259357857ccd9cb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00008.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00008.png"/></svg:svg></span></span>, show that HO<span class="inline-formula"><sub><i>x</i></sub></span> transmission increases with temperature. Comparisons with other instruments and the implications of this work are discussed.</p>
first_indexed 2024-03-11T19:52:51Z
format Article
id doaj.art-f2acba2eb41a4e98b296e4041b265914
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-03-11T19:52:51Z
publishDate 2023-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-f2acba2eb41a4e98b296e4041b2659142023-10-05T05:17:18ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482023-10-01164375439010.5194/amt-16-4375-2023Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO<sub>2</sub> radicals using laser-induced fluorescence spectroscopyF. A. F. Winiberg0F. A. F. Winiberg1W. J. Warman2C. A. Brumby3G. Boustead4I. G. Bejan5I. G. Bejan6T. H. Speak7D. E. Heard8D. Stone9P. W. Seakins10School of Chemistry, University of Leeds, Leeds, LS2 9JT, UKnow at: NASA's Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109, USASchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKnow at: Faculty of Chemistry and Integrated Center of Environmental Science Studies in the North-East Development Region – CERNESIM, Al. I. Cuza University of Iasi, Iaşi, RomaniaSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UKSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UK<p>Laser-induced fluorescence (LIF) spectroscopy has been widely applied to fieldwork measurements of OH radicals and HO<span class="inline-formula"><sub>2</sub></span>, following conversion to OH, over a wide variety of conditions, on different platforms and in simulation chambers. Conventional calibration of HO<span class="inline-formula"><sub><i>x</i></sub></span> (OH <span class="inline-formula">+</span> HO<span class="inline-formula"><sub>2</sub>)</span> instruments has mainly relied on a single method, generating known concentrations of HO<span class="inline-formula"><sub><i>x</i></sub></span> from H<span class="inline-formula"><sub>2</sub></span>O vapour photolysis in a flow of zero air impinging just outside the sample inlet (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>S</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub><mo>=</mo><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a8411aac0d8cf0a0c2528ae5c1f994f0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00001.svg" width="61pt" height="14pt" src="amt-16-4375-2023-ie00001.png"/></svg:svg></span></span>. [HO<span class="inline-formula"><sub><i>x</i></sub></span>], where <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>S</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="99adca0f196971c0ddf400f480a97d1a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00002.svg" width="24pt" height="14pt" src="amt-16-4375-2023-ie00002.png"/></svg:svg></span></span> is the observed signal and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c7441023ee7fbf1c8df9852f9fd20f77"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00003.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00003.png"/></svg:svg></span></span> is the calibration factor). The fluorescence assay by gaseous expansion (FAGE) apparatus designed for HO<span class="inline-formula"><sub><i>x</i></sub></span> measurements in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) at the University of Leeds has been used to examine the sensitivity of FAGE to external gas temperatures (266–348 K).</p> <p>The conventional calibration methods give the temperature dependence of <span class="inline-formula"><i>C</i><sub>OH</sub></span> (relative to the value at 293 K) of (<span class="inline-formula">0.0059±0.0015</span>) K<span class="inline-formula"><sup>−1</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ca01ee0763cb589d8d1068af425be367"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00004.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00004.png"/></svg:svg></span></span> of (<span class="inline-formula">0.014±0.013</span>) K<span class="inline-formula"><sup>−1</sup></span>. Errors are 2<span class="inline-formula"><i>σ</i></span>. <span class="inline-formula"><i>C</i><sub>OH</sub></span> was also determined by observing the decay of hydrocarbons (typically cyclohexane) caused by OH reactions giving <span class="inline-formula"><i>C</i><sub>OH</sub></span> (again, relative to the value at 293 K) of (<span class="inline-formula">0.0038±0.0007</span>) K<span class="inline-formula"><sup>−1</sup></span>. Additionally, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="8d3dc85ed63faac906e8fe6b34c5328f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00005.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00005.png"/></svg:svg></span></span> was determined based on the second-order kinetics of HO<span class="inline-formula"><sub>2</sub></span> recombination with the temperature dependence of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="97ebeb954ff4aa96afdf766f469eb2e0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00006.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00006.png"/></svg:svg></span></span>, relative to 293 K being (<span class="inline-formula">0.0064±0.0034</span>) K<span class="inline-formula"><sup>−1</sup></span>.</p> <p>The temperature dependence of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M29" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5e1d7487bc9fb12936ba6d5302861956"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00007.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00007.png"/></svg:svg></span></span> depends on the HO<span class="inline-formula"><sub><i>x</i></sub></span> number density, quenching, the relative population of the probed OH rotational level and HO<span class="inline-formula"><sub><i>x</i></sub></span> transmission from the inlet to the detection axis. The first three terms can be calculated and, in combination with the measured values of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M32" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>C</mi><mrow class="chem"><msub><mi mathvariant="normal">HO</mi><mi>x</mi></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="98fcb6c7ca6fb710f259357857ccd9cb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-16-4375-2023-ie00008.svg" width="25pt" height="14pt" src="amt-16-4375-2023-ie00008.png"/></svg:svg></span></span>, show that HO<span class="inline-formula"><sub><i>x</i></sub></span> transmission increases with temperature. Comparisons with other instruments and the implications of this work are discussed.</p>https://amt.copernicus.org/articles/16/4375/2023/amt-16-4375-2023.pdf
spellingShingle F. A. F. Winiberg
F. A. F. Winiberg
W. J. Warman
C. A. Brumby
G. Boustead
I. G. Bejan
I. G. Bejan
T. H. Speak
D. E. Heard
D. Stone
P. W. Seakins
Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO<sub>2</sub> radicals using laser-induced fluorescence spectroscopy
Atmospheric Measurement Techniques
title Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO<sub>2</sub> radicals using laser-induced fluorescence spectroscopy
title_full Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO<sub>2</sub> radicals using laser-induced fluorescence spectroscopy
title_fullStr Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO<sub>2</sub> radicals using laser-induced fluorescence spectroscopy
title_full_unstemmed Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO<sub>2</sub> radicals using laser-induced fluorescence spectroscopy
title_short Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO<sub>2</sub> radicals using laser-induced fluorescence spectroscopy
title_sort comparison of temperature dependent calibration methods of an instrument to measure oh and ho sub 2 sub radicals using laser induced fluorescence spectroscopy
url https://amt.copernicus.org/articles/16/4375/2023/amt-16-4375-2023.pdf
work_keys_str_mv AT fafwiniberg comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT fafwiniberg comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT wjwarman comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT cabrumby comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT gboustead comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT igbejan comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT igbejan comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT thspeak comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT deheard comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT dstone comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy
AT pwseakins comparisonoftemperaturedependentcalibrationmethodsofaninstrumenttomeasureohandhosub2subradicalsusinglaserinducedfluorescencespectroscopy