Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy

The purpose of this investigation was to study the low-cycle fatigue (LCF) behavior of a newly developed high-pressure die-cast (HPDC) Al-5.5Mg-2.5Si-0.6Mn-0.2Fe (AlMgSiMnFe) alloy. The effect of heat-treatment in comparison with its as-cast counterpart was also identified. The layered (α-Al + Mg<...

Full description

Bibliographic Details
Main Authors: Sohail Mohammed, Shubham Gupta, Dejiang Li, Xiaoqin Zeng, Daolun Chen
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/18/4115
_version_ 1797553552516710400
author Sohail Mohammed
Shubham Gupta
Dejiang Li
Xiaoqin Zeng
Daolun Chen
author_facet Sohail Mohammed
Shubham Gupta
Dejiang Li
Xiaoqin Zeng
Daolun Chen
author_sort Sohail Mohammed
collection DOAJ
description The purpose of this investigation was to study the low-cycle fatigue (LCF) behavior of a newly developed high-pressure die-cast (HPDC) Al-5.5Mg-2.5Si-0.6Mn-0.2Fe (AlMgSiMnFe) alloy. The effect of heat-treatment in comparison with its as-cast counterpart was also identified. The layered (α-Al + Mg<sub>2</sub>Si) eutectic structure plus a small amount of Al<sub>8</sub>(Fe,Mn)<sub>2</sub>Si phase in the as-cast condition became an in-situ Mg<sub>2</sub>Si particulate-reinforced aluminum composite with spherical Mg<sub>2</sub>Si particles uniformly distributed in the α-Al matrix after heat treatment. Due to the spheroidization of intermetallic phases including both Mg<sub>2</sub>Si and Al<sub>8</sub>(Fe,Mn)<sub>2</sub>Si, the ductility and hardening capacity increased while the yield stress (YS) and ultimate tensile strength (UTS) decreased. Portevin–Le Chatelier effect (or serrated flow) was observed in both tensile stress–strain curves and initial hysteresis loops during cyclic deformation because of dynamic strain aging caused by strong dislocation–precipitate interactions. The alloy exhibited cyclic hardening in both as-cast and heat-treated conditions when the applied total strain amplitude was above 0.4%, below which cyclic stabilization was sustained. The heat-treated alloy displayed a larger plastic strain amplitude and a lower stress amplitude at a given total strain amplitude, demonstrating a superior fatigue resistance in the LCF regime. A simple equation based on the stress amplitude of the first and mid-life cycles (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>d</mi></mrow></msub></mrow></semantics></math></inline-formula>) was proposed to characterize the degree of cyclic hardening/softening (<i>D</i>): <inline-formula><math display="inline"><semantics><mrow><mi>D</mi><mo>=</mo><mo>±</mo><mfrac><mrow><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>d</mi></mrow></msub><mo> </mo><mo>−</mo><mo> </mo><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi></mrow></msub></mrow><mrow><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi></mrow></msub></mrow></mfrac><mo>,</mo></mrow></semantics></math></inline-formula> where the positive sign “+” represents cyclic hardening and the negative sign “−“ reflects cyclic softening.
first_indexed 2024-03-10T16:18:09Z
format Article
id doaj.art-f2b8dadc2f9e428796d5ed5b179cc753
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-10T16:18:09Z
publishDate 2020-09-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-f2b8dadc2f9e428796d5ed5b179cc7532023-11-20T13:57:09ZengMDPI AGMaterials1996-19442020-09-011318411510.3390/ma13184115Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum AlloySohail Mohammed0Shubham Gupta1Dejiang Li2Xiaoqin Zeng3Daolun Chen4Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, CanadaDepartment of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, CanadaState Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, ChinaState Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, ChinaDepartment of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, CanadaThe purpose of this investigation was to study the low-cycle fatigue (LCF) behavior of a newly developed high-pressure die-cast (HPDC) Al-5.5Mg-2.5Si-0.6Mn-0.2Fe (AlMgSiMnFe) alloy. The effect of heat-treatment in comparison with its as-cast counterpart was also identified. The layered (α-Al + Mg<sub>2</sub>Si) eutectic structure plus a small amount of Al<sub>8</sub>(Fe,Mn)<sub>2</sub>Si phase in the as-cast condition became an in-situ Mg<sub>2</sub>Si particulate-reinforced aluminum composite with spherical Mg<sub>2</sub>Si particles uniformly distributed in the α-Al matrix after heat treatment. Due to the spheroidization of intermetallic phases including both Mg<sub>2</sub>Si and Al<sub>8</sub>(Fe,Mn)<sub>2</sub>Si, the ductility and hardening capacity increased while the yield stress (YS) and ultimate tensile strength (UTS) decreased. Portevin–Le Chatelier effect (or serrated flow) was observed in both tensile stress–strain curves and initial hysteresis loops during cyclic deformation because of dynamic strain aging caused by strong dislocation–precipitate interactions. The alloy exhibited cyclic hardening in both as-cast and heat-treated conditions when the applied total strain amplitude was above 0.4%, below which cyclic stabilization was sustained. The heat-treated alloy displayed a larger plastic strain amplitude and a lower stress amplitude at a given total strain amplitude, demonstrating a superior fatigue resistance in the LCF regime. A simple equation based on the stress amplitude of the first and mid-life cycles (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>d</mi></mrow></msub></mrow></semantics></math></inline-formula>) was proposed to characterize the degree of cyclic hardening/softening (<i>D</i>): <inline-formula><math display="inline"><semantics><mrow><mi>D</mi><mo>=</mo><mo>±</mo><mfrac><mrow><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>d</mi></mrow></msub><mo> </mo><mo>−</mo><mo> </mo><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi></mrow></msub></mrow><mrow><msub><mrow><mrow><mo>(</mo><mrow><mi mathvariant="sans-serif">Δ</mi><mi>σ</mi><mo>/</mo><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mi>f</mi><mi>i</mi><mi>r</mi><mi>s</mi><mi>t</mi></mrow></msub></mrow></mfrac><mo>,</mo></mrow></semantics></math></inline-formula> where the positive sign “+” represents cyclic hardening and the negative sign “−“ reflects cyclic softening.https://www.mdpi.com/1996-1944/13/18/4115AlMgSiMnFe alloyheat treatmentlow-cycle fatiguecyclic hardeningserrated flow
spellingShingle Sohail Mohammed
Shubham Gupta
Dejiang Li
Xiaoqin Zeng
Daolun Chen
Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy
Materials
AlMgSiMnFe alloy
heat treatment
low-cycle fatigue
cyclic hardening
serrated flow
title Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy
title_full Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy
title_fullStr Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy
title_full_unstemmed Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy
title_short Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy
title_sort cyclic deformation behavior of a heat treated die cast al mg si based aluminum alloy
topic AlMgSiMnFe alloy
heat treatment
low-cycle fatigue
cyclic hardening
serrated flow
url https://www.mdpi.com/1996-1944/13/18/4115
work_keys_str_mv AT sohailmohammed cyclicdeformationbehaviorofaheattreateddiecastalmgsibasedaluminumalloy
AT shubhamgupta cyclicdeformationbehaviorofaheattreateddiecastalmgsibasedaluminumalloy
AT dejiangli cyclicdeformationbehaviorofaheattreateddiecastalmgsibasedaluminumalloy
AT xiaoqinzeng cyclicdeformationbehaviorofaheattreateddiecastalmgsibasedaluminumalloy
AT daolunchen cyclicdeformationbehaviorofaheattreateddiecastalmgsibasedaluminumalloy