Strategies for analyzing highly enriched IP-chip datasets

<p>Abstract</p> <p>Background</p> <p>Chromatin immunoprecipitation on tiling arrays (ChIP-chip) has been employed to examine features such as protein binding and histone modifications on a genome-wide scale in a variety of cell types. Array data from the latter studies...

Full description

Bibliographic Details
Main Authors: Tavaré Simon, Aparicio Oscar M, Viggiani Christopher J, Knott Simon RV
Format: Article
Language:English
Published: BMC 2009-09-01
Series:BMC Bioinformatics
Online Access:http://www.biomedcentral.com/1471-2105/10/305
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Chromatin immunoprecipitation on tiling arrays (ChIP-chip) has been employed to examine features such as protein binding and histone modifications on a genome-wide scale in a variety of cell types. Array data from the latter studies typically have a high proportion of enriched probes whose signals vary considerably (due to heterogeneity in the cell population), and this makes their normalization and downstream analysis difficult.</p> <p>Results</p> <p>Here we present strategies for analyzing such experiments, focusing our discussion on the analysis of Bromodeoxyruridine (BrdU) immunoprecipitation on tiling array (BrdU-IP-chip) datasets. BrdU-IP-chip experiments map large, recently replicated genomic regions and have similar characteristics to histone modification/location data. To prepare such data for downstream analysis we employ a dynamic programming algorithm that identifies a set of putative unenriched probes, which we use for both within-array and between-array normalization. We also introduce a second dynamic programming algorithm that incorporates <it>a priori </it>knowledge to identify and quantify positive signals in these datasets.</p> <p>Conclusion</p> <p>Highly enriched IP-chip datasets are often difficult to analyze with traditional array normalization and analysis strategies. Here we present and test a set of analytical tools for their normalization and quantification that allows for accurate identification and analysis of enriched regions.</p>
ISSN:1471-2105