Electron Transfer via Helical Oligopeptide to Laccase Including Chiral Schiff Base Copper Mediators

The oxygen reduction efficiency of a laccase-modified electrode was found to depend on the chirality of the oligopeptide linker used to bind the enzyme to the surface. At the same time, the electron transfer between the cathode electrode and the enzyme is improved by using a copper(II) complex with...

Full description

Bibliographic Details
Main Authors: Kumpei Kashiwagi, Francesco Tassinari, Tomoyuki Haraguchi, Koyel Banerjee-Gosh, Takashiro Akitsu, Ron Naaman
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/5/808
Description
Summary:The oxygen reduction efficiency of a laccase-modified electrode was found to depend on the chirality of the oligopeptide linker used to bind the enzyme to the surface. At the same time, the electron transfer between the cathode electrode and the enzyme is improved by using a copper(II) complex with amino-acid derivative Schiff base ligand with/without azobenzene moiety as a mediator. The increased electrochemical current under both O<sub>2</sub> and N<sub>2</sub> proves that both the mediators are active towards the enzyme.
ISSN:2073-8994