Fréchet Binomial Distribution: Statistical Properties, Acceptance Sampling Plan, Statistical Inference and Applications to Lifetime Data

A new class of distribution called the Fréchet binomial (FB) distribution is proposed. The new suggested model is very flexible because its probability density function can be unimodal, decreasing and skewed to the right. Furthermore, the hazard rate function can be increasing, decreasing, up-side-d...

Full description

Bibliographic Details
Main Authors: Salem A. Alyami, Mohammed Elgarhy, Ibrahim Elbatal, Ehab M. Almetwally, Naif Alotaibi, Ahmed R. El-Saeed
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/8/389
_version_ 1797432534662905856
author Salem A. Alyami
Mohammed Elgarhy
Ibrahim Elbatal
Ehab M. Almetwally
Naif Alotaibi
Ahmed R. El-Saeed
author_facet Salem A. Alyami
Mohammed Elgarhy
Ibrahim Elbatal
Ehab M. Almetwally
Naif Alotaibi
Ahmed R. El-Saeed
author_sort Salem A. Alyami
collection DOAJ
description A new class of distribution called the Fréchet binomial (FB) distribution is proposed. The new suggested model is very flexible because its probability density function can be unimodal, decreasing and skewed to the right. Furthermore, the hazard rate function can be increasing, decreasing, up-side-down and reversed-J form. Important mixture representations of the probability density function (pdf) and cumulative distribution function (cdf) are computed. Numerous sub-models of the FB distribution are explored. Numerous statistical and mathematical features of the FB distribution such as the quantile function (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>U</mi><mi>N</mi></mrow></msub><mi>F</mi></mrow></semantics></math></inline-formula>); moments (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula>); incomplete <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><msub><mi>M</mi><mi>O</mi></msub></mrow></semantics></math></inline-formula>); conditional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>M</mi><mi>O</mi></msub></mrow></semantics></math></inline-formula>); <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula> generating function (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mi>O</mi></msub><mi>G</mi><mi>F</mi></mrow></semantics></math></inline-formula>); probability weighted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>W</mi><msub><mi>M</mi><mi>O</mi></msub></mrow></semantics></math></inline-formula>); order statistics; and entropy are computed. When the life test is shortened at a certain time, acceptance sampling (ACS) plans for the new proposed distribution, FB distribution, are produced. The truncation time is supposed to be the median lifetime of the FB distribution multiplied by a set of parameters. The smallest sample size required ensures that the specified life test is obtained at a particular consumer’s risk. The numerical results for a particular consumer’s risk, FB distribution parameters and truncation time are generated. We discuss the method of maximum likelihood to estimate the model parameters. A simulation study was performed to assess the behavior of the estimates. Three real datasets are used to illustrate the importance and flexibility of the proposed model.
first_indexed 2024-03-09T10:02:03Z
format Article
id doaj.art-f2d114e5276d47939e7239c37dab28a1
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T10:02:03Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-f2d114e5276d47939e7239c37dab28a12023-12-01T23:24:35ZengMDPI AGAxioms2075-16802022-08-0111838910.3390/axioms11080389Fréchet Binomial Distribution: Statistical Properties, Acceptance Sampling Plan, Statistical Inference and Applications to Lifetime DataSalem A. Alyami0Mohammed Elgarhy1Ibrahim Elbatal2Ehab M. Almetwally3Naif Alotaibi4Ahmed R. El-Saeed5Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi ArabiaThe Higher Institute of Commercial Sciences, Al Mahalla Al Kubra 31951, EgyptDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi ArabiaFaculty of Business Administration, Delta University of Science and Technology, Gamasa 11152, EgyptDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi ArabiaDepartment of Basic Sciences, Obour High Institute for Management & Informatics, Obour 11848, EgyptA new class of distribution called the Fréchet binomial (FB) distribution is proposed. The new suggested model is very flexible because its probability density function can be unimodal, decreasing and skewed to the right. Furthermore, the hazard rate function can be increasing, decreasing, up-side-down and reversed-J form. Important mixture representations of the probability density function (pdf) and cumulative distribution function (cdf) are computed. Numerous sub-models of the FB distribution are explored. Numerous statistical and mathematical features of the FB distribution such as the quantile function (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>U</mi><mi>N</mi></mrow></msub><mi>F</mi></mrow></semantics></math></inline-formula>); moments (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula>); incomplete <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><msub><mi>M</mi><mi>O</mi></msub></mrow></semantics></math></inline-formula>); conditional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>M</mi><mi>O</mi></msub></mrow></semantics></math></inline-formula>); <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula> generating function (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mi>O</mi></msub><mi>G</mi><mi>F</mi></mrow></semantics></math></inline-formula>); probability weighted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mi>O</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>W</mi><msub><mi>M</mi><mi>O</mi></msub></mrow></semantics></math></inline-formula>); order statistics; and entropy are computed. When the life test is shortened at a certain time, acceptance sampling (ACS) plans for the new proposed distribution, FB distribution, are produced. The truncation time is supposed to be the median lifetime of the FB distribution multiplied by a set of parameters. The smallest sample size required ensures that the specified life test is obtained at a particular consumer’s risk. The numerical results for a particular consumer’s risk, FB distribution parameters and truncation time are generated. We discuss the method of maximum likelihood to estimate the model parameters. A simulation study was performed to assess the behavior of the estimates. Three real datasets are used to illustrate the importance and flexibility of the proposed model.https://www.mdpi.com/2075-1680/11/8/389Fréchet distributionbinomial distributionmomentsentropyacceptance sampling planmaximum likelihood approach
spellingShingle Salem A. Alyami
Mohammed Elgarhy
Ibrahim Elbatal
Ehab M. Almetwally
Naif Alotaibi
Ahmed R. El-Saeed
Fréchet Binomial Distribution: Statistical Properties, Acceptance Sampling Plan, Statistical Inference and Applications to Lifetime Data
Axioms
Fréchet distribution
binomial distribution
moments
entropy
acceptance sampling plan
maximum likelihood approach
title Fréchet Binomial Distribution: Statistical Properties, Acceptance Sampling Plan, Statistical Inference and Applications to Lifetime Data
title_full Fréchet Binomial Distribution: Statistical Properties, Acceptance Sampling Plan, Statistical Inference and Applications to Lifetime Data
title_fullStr Fréchet Binomial Distribution: Statistical Properties, Acceptance Sampling Plan, Statistical Inference and Applications to Lifetime Data
title_full_unstemmed Fréchet Binomial Distribution: Statistical Properties, Acceptance Sampling Plan, Statistical Inference and Applications to Lifetime Data
title_short Fréchet Binomial Distribution: Statistical Properties, Acceptance Sampling Plan, Statistical Inference and Applications to Lifetime Data
title_sort frechet binomial distribution statistical properties acceptance sampling plan statistical inference and applications to lifetime data
topic Fréchet distribution
binomial distribution
moments
entropy
acceptance sampling plan
maximum likelihood approach
url https://www.mdpi.com/2075-1680/11/8/389
work_keys_str_mv AT salemaalyami frechetbinomialdistributionstatisticalpropertiesacceptancesamplingplanstatisticalinferenceandapplicationstolifetimedata
AT mohammedelgarhy frechetbinomialdistributionstatisticalpropertiesacceptancesamplingplanstatisticalinferenceandapplicationstolifetimedata
AT ibrahimelbatal frechetbinomialdistributionstatisticalpropertiesacceptancesamplingplanstatisticalinferenceandapplicationstolifetimedata
AT ehabmalmetwally frechetbinomialdistributionstatisticalpropertiesacceptancesamplingplanstatisticalinferenceandapplicationstolifetimedata
AT naifalotaibi frechetbinomialdistributionstatisticalpropertiesacceptancesamplingplanstatisticalinferenceandapplicationstolifetimedata
AT ahmedrelsaeed frechetbinomialdistributionstatisticalpropertiesacceptancesamplingplanstatisticalinferenceandapplicationstolifetimedata