The inferred cardiogenic gene regulatory network in the mammalian heart.
Cardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4074065?pdf=render |
_version_ | 1818585589572698112 |
---|---|
author | Jason N Bazil Karl D Stamm Xing Li Raghuram Thiagarajan Timothy J Nelson Aoy Tomita-Mitchell Daniel A Beard |
author_facet | Jason N Bazil Karl D Stamm Xing Li Raghuram Thiagarajan Timothy J Nelson Aoy Tomita-Mitchell Daniel A Beard |
author_sort | Jason N Bazil |
collection | DOAJ |
description | Cardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes of interest were input into the algorithm to generate putative network topologies that are capable of explaining the experimental data via model simulation. To cull specious network interactions, thousands of putative networks are merged and filtered to generate scale-free, hierarchical networks that are statistically significant and biologically relevant. The networks are validated with known gene interactions and used to predict regulatory pathways important for the developing mammalian heart. Area under the precision-recall curve and receiver operator characteristic curve are 9% and 58%, respectively. Of the top 10 ranked predicted interactions, 4 have already been validated. The algorithm is further tested using a network enriched with known interactions and another depleted of them. The inferred networks contained more interactions for the enriched network versus the depleted network. In all test cases, maximum performance of the algorithm was achieved when the purely data-driven method of network inference was combined with a data-independent, functional-based association method. Lastly, the network generated from the list of approximately 200 genes of interest was expanded using gene-profile uniqueness metrics to include approximately 900 additional known mouse genes and to form the most likely cardiogenic gene regulatory network. The resultant network supports known regulatory interactions and contains several novel cardiogenic regulatory interactions. The method outlined herein provides an informative approach to network inference and leads to clear testable hypotheses related to gene regulation. |
first_indexed | 2024-12-16T08:39:28Z |
format | Article |
id | doaj.art-f2d11c0fea7f49fa8e0d7a1c748b0ca2 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-16T08:39:28Z |
publishDate | 2014-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-f2d11c0fea7f49fa8e0d7a1c748b0ca22022-12-21T22:37:43ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0196e10084210.1371/journal.pone.0100842The inferred cardiogenic gene regulatory network in the mammalian heart.Jason N BazilKarl D StammXing LiRaghuram ThiagarajanTimothy J NelsonAoy Tomita-MitchellDaniel A BeardCardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes of interest were input into the algorithm to generate putative network topologies that are capable of explaining the experimental data via model simulation. To cull specious network interactions, thousands of putative networks are merged and filtered to generate scale-free, hierarchical networks that are statistically significant and biologically relevant. The networks are validated with known gene interactions and used to predict regulatory pathways important for the developing mammalian heart. Area under the precision-recall curve and receiver operator characteristic curve are 9% and 58%, respectively. Of the top 10 ranked predicted interactions, 4 have already been validated. The algorithm is further tested using a network enriched with known interactions and another depleted of them. The inferred networks contained more interactions for the enriched network versus the depleted network. In all test cases, maximum performance of the algorithm was achieved when the purely data-driven method of network inference was combined with a data-independent, functional-based association method. Lastly, the network generated from the list of approximately 200 genes of interest was expanded using gene-profile uniqueness metrics to include approximately 900 additional known mouse genes and to form the most likely cardiogenic gene regulatory network. The resultant network supports known regulatory interactions and contains several novel cardiogenic regulatory interactions. The method outlined herein provides an informative approach to network inference and leads to clear testable hypotheses related to gene regulation.http://europepmc.org/articles/PMC4074065?pdf=render |
spellingShingle | Jason N Bazil Karl D Stamm Xing Li Raghuram Thiagarajan Timothy J Nelson Aoy Tomita-Mitchell Daniel A Beard The inferred cardiogenic gene regulatory network in the mammalian heart. PLoS ONE |
title | The inferred cardiogenic gene regulatory network in the mammalian heart. |
title_full | The inferred cardiogenic gene regulatory network in the mammalian heart. |
title_fullStr | The inferred cardiogenic gene regulatory network in the mammalian heart. |
title_full_unstemmed | The inferred cardiogenic gene regulatory network in the mammalian heart. |
title_short | The inferred cardiogenic gene regulatory network in the mammalian heart. |
title_sort | inferred cardiogenic gene regulatory network in the mammalian heart |
url | http://europepmc.org/articles/PMC4074065?pdf=render |
work_keys_str_mv | AT jasonnbazil theinferredcardiogenicgeneregulatorynetworkinthemammalianheart AT karldstamm theinferredcardiogenicgeneregulatorynetworkinthemammalianheart AT xingli theinferredcardiogenicgeneregulatorynetworkinthemammalianheart AT raghuramthiagarajan theinferredcardiogenicgeneregulatorynetworkinthemammalianheart AT timothyjnelson theinferredcardiogenicgeneregulatorynetworkinthemammalianheart AT aoytomitamitchell theinferredcardiogenicgeneregulatorynetworkinthemammalianheart AT danielabeard theinferredcardiogenicgeneregulatorynetworkinthemammalianheart AT jasonnbazil inferredcardiogenicgeneregulatorynetworkinthemammalianheart AT karldstamm inferredcardiogenicgeneregulatorynetworkinthemammalianheart AT xingli inferredcardiogenicgeneregulatorynetworkinthemammalianheart AT raghuramthiagarajan inferredcardiogenicgeneregulatorynetworkinthemammalianheart AT timothyjnelson inferredcardiogenicgeneregulatorynetworkinthemammalianheart AT aoytomitamitchell inferredcardiogenicgeneregulatorynetworkinthemammalianheart AT danielabeard inferredcardiogenicgeneregulatorynetworkinthemammalianheart |