Hot Water Extraction of Corn Stover: Hemicellulose Fractionation and its Effect on Subsequent Soda-AQ Pulping

Fractionation of lignocellulosic biomass is an important process in producing biofuels. In this study, hot water extraction of corn stover hemicellulose was carried out at 150, 160, and 170 °C. Variations of sugar content in the hydrolysate under different holding time were detected. The contents of...

Full description

Bibliographic Details
Main Authors: Heli Cheng, Jinling Li, Qinghua Feng, Huaiyu Zhan, Yimin Xie
Format: Article
Language:English
Published: North Carolina State University 2014-03-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_2_2671_Cheng_Hot_Water_Extraction_Stover
Description
Summary:Fractionation of lignocellulosic biomass is an important process in producing biofuels. In this study, hot water extraction of corn stover hemicellulose was carried out at 150, 160, and 170 °C. Variations of sugar content in the hydrolysate under different holding time were detected. The contents of furfural and 5-hydroxymethyl-2-furaldehyde generated during the extraction were also determined. Results showed that the main composition of the hydrolysate was xylo-oligosaccharide; the yield of oligosaccharides first increased as holding time was prolonged. After extraction at 160 °C for 210 min, 70.2% of the total xylan was dissolved, with the generation of furfural (0.90 g/L) and 5-hydroxymethyl-2-furaldehyde (0.10 g/L). The effects of extraction on alkali pulping and bleaching were also investigated. Results indicated that soda-AQ pulp obtained from the extracted material had poorer tensile and burst strengths but better tear strength.
ISSN:1930-2126
1930-2126