Residual Flexural Capacity of Corroded Prestressed Reinforced Concrete Beams

Infrastructures and industrial buildings are commonly exposed to aggressive environments and damaged by corrosion. In prestressed reinforced concrete structures, the potential risks of corrosion could be severe since reinforcements are already subjected to high amounts of stress and, consequently, t...

Full description

Bibliographic Details
Main Authors: Mahdi Kioumarsi, Armando Benenato, Barbara Ferracuti, Stefania Imperatore
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/3/442
Description
Summary:Infrastructures and industrial buildings are commonly exposed to aggressive environments and damaged by corrosion. In prestressed reinforced concrete structures, the potential risks of corrosion could be severe since reinforcements are already subjected to high amounts of stress and, consequently, their load-bearing capacity could abruptly decrease. In recent years, some experimental studies have been conducted to explore the flexural behavior of corroded pretensioned reinforced concrete (PRC) beams, investigating several aspects of residual structural performance. Although many studies have been done in this area, there is no concise paper reviewing the state-of-the-art research. Accordingly, the main objective of this paper is to provide a review of the available experimental tests for residual capacity assessment of corroded PRC beams. Based on the state-of-the-art review, a degradation law for the flexural strength of corroded PRC beams is suggested.
ISSN:2075-4701