Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology

<p>The methodology of analysing the biomass burning events recorded in the database of the European Aerosol Research Lidar Network in the framework of the Aerosol, Clouds and Trace Gases Research Infrastructure is presented. The period of 2008–2017 was chosen to analyse all of the events store...

Full description

Bibliographic Details
Main Authors: M. Adam, D. Nicolae, I. S. Stachlewska, A. Papayannis, D. Balis
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/20/13905/2020/acp-20-13905-2020.pdf
_version_ 1818404254238375936
author M. Adam
D. Nicolae
I. S. Stachlewska
A. Papayannis
D. Balis
author_facet M. Adam
D. Nicolae
I. S. Stachlewska
A. Papayannis
D. Balis
author_sort M. Adam
collection DOAJ
description <p>The methodology of analysing the biomass burning events recorded in the database of the European Aerosol Research Lidar Network in the framework of the Aerosol, Clouds and Trace Gases Research Infrastructure is presented. The period of 2008–2017 was chosen to analyse all of the events stored in the database under the Forest Fire category for a total of 14 stations available. The data provided ranged from complete datasets (particle backscatter, extinction and linear depolarization ratio profiles) to single profiles (particle backscatter coefficient profile). Smoke layers geometry was evaluated and the mean optical properties within each layer were computed. The back-trajectory technique was used to double-check the source of all pollution layers. The biomass burning layers were identified by taking into account the presence of the fires along the back trajectory. The biomass burning events are analysed by the means of the intensive parameters. The analysis was structured in three directions: (I) common biomass burning source (fire) recorded by at least two stations, (II) long-range transport from North America, and (III) analysis over four geographical regions (south-eastern Europe, north-eastern Europe, central Europe, and south-western Europe). Based on back-trajectory calculations and fire locations, the lidar measurements can be labelled either as measurements of a “single fire” or “mixed fires” (case I), measurements of North American fires, or measurements of mixed North American and local fires (case II). The histogram of the fire locations reveals the smoke sources for each region. For each region, statistics on intensive parameters are performed. The source origin of the intensive parameters is categorized based on the continental origin of the air mass (European, African, Asian, North American, or a combination of them). The methodology presented here is meant to provide a perspective to explore a large number of lidar data and deliver novel approaches to analyse the intensive parameters based on the assigned biomass burning sources. A thorough consideration of all potential fire sources reveals that most of the time the lidar measurements characterize the smoke from a mixture of fires. A comprehensive discussion of all the results (based on the intensive parameters and the source locations) will be given in a companion paper submitted to the ACP EARLINET special issue.</p>
first_indexed 2024-12-14T08:37:14Z
format Article
id doaj.art-f2fa040a419c415799a097da1fcfde55
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-14T08:37:14Z
publishDate 2020-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-f2fa040a419c415799a097da1fcfde552022-12-21T23:09:24ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-11-0120139051392710.5194/acp-20-13905-2020Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodologyM. Adam0D. Nicolae1I. S. Stachlewska2A. Papayannis3D. Balis4National Institute for R&D in Optoelectronics, Magurele, 077225, RomaniaNational Institute for R&D in Optoelectronics, Magurele, 077225, RomaniaInstitute of Geophysics, Faculty of Physics, University of Warsaw, 02093, PolandNational Technical University of Athens, Department of Physics, Athens, 15780, GreeceLaboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece<p>The methodology of analysing the biomass burning events recorded in the database of the European Aerosol Research Lidar Network in the framework of the Aerosol, Clouds and Trace Gases Research Infrastructure is presented. The period of 2008–2017 was chosen to analyse all of the events stored in the database under the Forest Fire category for a total of 14 stations available. The data provided ranged from complete datasets (particle backscatter, extinction and linear depolarization ratio profiles) to single profiles (particle backscatter coefficient profile). Smoke layers geometry was evaluated and the mean optical properties within each layer were computed. The back-trajectory technique was used to double-check the source of all pollution layers. The biomass burning layers were identified by taking into account the presence of the fires along the back trajectory. The biomass burning events are analysed by the means of the intensive parameters. The analysis was structured in three directions: (I) common biomass burning source (fire) recorded by at least two stations, (II) long-range transport from North America, and (III) analysis over four geographical regions (south-eastern Europe, north-eastern Europe, central Europe, and south-western Europe). Based on back-trajectory calculations and fire locations, the lidar measurements can be labelled either as measurements of a “single fire” or “mixed fires” (case I), measurements of North American fires, or measurements of mixed North American and local fires (case II). The histogram of the fire locations reveals the smoke sources for each region. For each region, statistics on intensive parameters are performed. The source origin of the intensive parameters is categorized based on the continental origin of the air mass (European, African, Asian, North American, or a combination of them). The methodology presented here is meant to provide a perspective to explore a large number of lidar data and deliver novel approaches to analyse the intensive parameters based on the assigned biomass burning sources. A thorough consideration of all potential fire sources reveals that most of the time the lidar measurements characterize the smoke from a mixture of fires. A comprehensive discussion of all the results (based on the intensive parameters and the source locations) will be given in a companion paper submitted to the ACP EARLINET special issue.</p>https://acp.copernicus.org/articles/20/13905/2020/acp-20-13905-2020.pdf
spellingShingle M. Adam
D. Nicolae
I. S. Stachlewska
A. Papayannis
D. Balis
Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology
Atmospheric Chemistry and Physics
title Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology
title_full Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology
title_fullStr Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology
title_full_unstemmed Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology
title_short Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology
title_sort biomass burning events measured by lidars in earlinet part 1 data analysis methodology
url https://acp.copernicus.org/articles/20/13905/2020/acp-20-13905-2020.pdf
work_keys_str_mv AT madam biomassburningeventsmeasuredbylidarsinearlinetpart1dataanalysismethodology
AT dnicolae biomassburningeventsmeasuredbylidarsinearlinetpart1dataanalysismethodology
AT isstachlewska biomassburningeventsmeasuredbylidarsinearlinetpart1dataanalysismethodology
AT apapayannis biomassburningeventsmeasuredbylidarsinearlinetpart1dataanalysismethodology
AT dbalis biomassburningeventsmeasuredbylidarsinearlinetpart1dataanalysismethodology