Preconcentration and Detection of Gefitinib Anti-Cancer Drug Traces from Water and Human Plasma Samples by Means of Magnetic Nanoparticles

Along of widespread application of anti-cancer drug Gefitinib (GEF), it appears in human body fluids as well as clinical wastewater. Consequently, a reliable and easy-to-adapt detection technique is of essential importance to quantify the drug in different media. The extraction and quantitative dete...

Full description

Bibliographic Details
Main Authors: Hadeer Borg, Dániel Zámbó, Heba Elmansi, Heba M. Hashem, Jenny Jehan Nasr, Mohammed I. Walash, Nadja C. Bigall, Fathalla Belal
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/6/1196
Description
Summary:Along of widespread application of anti-cancer drug Gefitinib (GEF), it appears in human body fluids as well as clinical wastewater. Consequently, a reliable and easy-to-adapt detection technique is of essential importance to quantify the drug in different media. The extraction and quantitative detection of anti-cancer drug Gefinitib (GEF) is demonstrated based on a straightforward and efficient magnetic nanoparticle-assisted preconcentration route from water and human plasma samples. Iron oxide magnetic nanoparticles (Fe<sub>3</sub>O<sub>4</sub>) have been prepared with an average particle size of 15 nm and utilized as extractible adsorbents for the magnetic solid-phase extraction (MSPE) of GEF in aqueous media. The method is based on MSPE and preconcentration of GEF followed by High-Performance Liquid Chromatography-Ultraviolet Detection (HPLC-UV). The yield of GEF extraction under the optimum MSPE conditions were 94% and 87% for water and plasma samples, respectively. The chromatographic separation was carried out isocratically at 25 °C on a Phenomenex C8 reversed phase column (150 mm × 4.6 mm, with 5 µm particle size). The proposed method was linear over concentration ranges of 15.0–300.0 and 80.0–600.0 ng/mL for water and plasma samples with limits of detection of 4.6 and 25.0 ng/mL in a respective order. Relative standard deviations (%RSD) for intra-day and inter-day were 0.75 and 0.94 for water samples and 1.26 and 1.70 for plasma samples, respectively. Using the magnetic nanoparticles (MNPs) as loaded drug-extractors made the detection of the anti-cancer drug environmentally friendly and simple and has great potential to be used for different drug-containing systems.
ISSN:2079-4991