Glucose Homeostasis and Pancreatic Islet Size Are Regulated by the Transcription Factors Elk-1 and Egr-1 and the Protein Phosphatase Calcineurin

Pancreatic β-cells synthesize and secrete insulin. A key feature of diabetes mellitus is the loss of these cells. A decrease in the number of β-cells results in decreased biosynthesis of insulin. Increasing the number of β-cells should restore adequate insulin biosynthesis leading to adequate insuli...

Full description

Bibliographic Details
Main Authors: Gerald Thiel, Oliver G. Rössler
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/1/815
Description
Summary:Pancreatic β-cells synthesize and secrete insulin. A key feature of diabetes mellitus is the loss of these cells. A decrease in the number of β-cells results in decreased biosynthesis of insulin. Increasing the number of β-cells should restore adequate insulin biosynthesis leading to adequate insulin secretion. Therefore, identifying proteins that regulate the number of β-cells is a high priority in diabetes research. In this review article, we summerize the results of three sophisticated transgenic mouse models showing that the transcription factors Elk-1 and Egr-1 and the Ca<sup>2+</sup>/calmodulin-regulated protein phosphatase calcineurin control the formation of sufficiently large pancreatic islets. Impairment of the biological activity of Egr-1 and Elk-1 in pancreatic β-cells leads to glucose intolerance and dysregulation of glucose homeostasis, the process that maintains glucose concentration in the blood within a narrow range. Transgenic mice expressing an activated calcineurin mutant also had smaller islets and showed hyperglycemia. Calcineurin induces dephosphorylation of Elk-1 which subsequently impairs Egr-1 biosynthesis and the biological functions of Elk-1 and Egr-1 to regulate islet size and glucose homeostasis.
ISSN:1661-6596
1422-0067