The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity

Abstract Voltage-gated sodium (NaV) channels are essential for the transmission of pain signals in humans making them prime targets for the development of new analgesics. Spider venoms are a rich source of peptide modulators useful to study ion channel structure and function. Here we describe β/δ-TR...

Full description

Bibliographic Details
Main Authors: Joshua S. Wingerd, Christine A. Mozar, Christine A. Ussing, Swetha S. Murali, Yanni K.-Y. Chin, Ben Cristofori-Armstrong, Thomas Durek, John Gilchrist, Christopher W. Vaughan, Frank Bosmans, David J. Adams, Richard J. Lewis, Paul F. Alewood, Mehdi Mobli, Macdonald J. Christie, Lachlan D. Rash
Format: Article
Language:English
Published: Nature Portfolio 2017-04-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-01129-0
_version_ 1818752250456047616
author Joshua S. Wingerd
Christine A. Mozar
Christine A. Ussing
Swetha S. Murali
Yanni K.-Y. Chin
Ben Cristofori-Armstrong
Thomas Durek
John Gilchrist
Christopher W. Vaughan
Frank Bosmans
David J. Adams
Richard J. Lewis
Paul F. Alewood
Mehdi Mobli
Macdonald J. Christie
Lachlan D. Rash
author_facet Joshua S. Wingerd
Christine A. Mozar
Christine A. Ussing
Swetha S. Murali
Yanni K.-Y. Chin
Ben Cristofori-Armstrong
Thomas Durek
John Gilchrist
Christopher W. Vaughan
Frank Bosmans
David J. Adams
Richard J. Lewis
Paul F. Alewood
Mehdi Mobli
Macdonald J. Christie
Lachlan D. Rash
author_sort Joshua S. Wingerd
collection DOAJ
description Abstract Voltage-gated sodium (NaV) channels are essential for the transmission of pain signals in humans making them prime targets for the development of new analgesics. Spider venoms are a rich source of peptide modulators useful to study ion channel structure and function. Here we describe β/δ-TRTX-Pre1a, a 35-residue tarantula peptide that selectively interacts with neuronal NaV channels inhibiting peak current of hNaV1.1, rNaV1.2, hNaV1.6, and hNaV1.7 while concurrently inhibiting fast inactivation of hNaV1.1 and rNaV1.3. The DII and DIV S3-S4 loops of NaV channel voltage sensors are important for the interaction of Pre1a with NaV channels but cannot account for its unique subtype selectivity. Through analysis of the binding regions we ascertained that the variability of the S1-S2 loops between NaV channels contributes substantially to the selectivity profile observed for Pre1a, particularly with regards to fast inactivation. A serine residue on the DIV S2 helix was found to be sufficient to explain Pre1a’s potent and selective inhibitory effect on the fast inactivation process of NaV1.1 and 1.3. This work highlights that interactions with both S1-S2 and S3-S4 of NaV channels may be necessary for functional modulation, and that targeting the diverse S1-S2 region within voltage-sensing domains provides an avenue to develop subtype selective tools.
first_indexed 2024-12-18T04:48:29Z
format Article
id doaj.art-f33655e710d64fada2b711f3a0de8577
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-12-18T04:48:29Z
publishDate 2017-04-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-f33655e710d64fada2b711f3a0de85772022-12-21T21:20:30ZengNature PortfolioScientific Reports2045-23222017-04-017111510.1038/s41598-017-01129-0The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivityJoshua S. Wingerd0Christine A. Mozar1Christine A. Ussing2Swetha S. Murali3Yanni K.-Y. Chin4Ben Cristofori-Armstrong5Thomas Durek6John Gilchrist7Christopher W. Vaughan8Frank Bosmans9David J. Adams10Richard J. Lewis11Paul F. Alewood12Mehdi Mobli13Macdonald J. Christie14Lachlan D. Rash15Institute for Molecular Bioscience, The University of QueenslandDiscipline of Pharmacology, University of SydneyInstitute for Molecular Bioscience, The University of QueenslandDiscipline of Pharmacology, University of SydneyInstitute for Molecular Bioscience, The University of QueenslandInstitute for Molecular Bioscience, The University of QueenslandInstitute for Molecular Bioscience, The University of QueenslandDepartment of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicinePain Management Research Institute, University of SydneyDepartment of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineIllawarra Health and Medical Research Institute, University of WollongongInstitute for Molecular Bioscience, The University of QueenslandInstitute for Molecular Bioscience, The University of QueenslandCentre for Advanced Imaging & School of Chemistry and Molecular Biosciences, The University of QueenslandDiscipline of Pharmacology, University of SydneyInstitute for Molecular Bioscience, The University of QueenslandAbstract Voltage-gated sodium (NaV) channels are essential for the transmission of pain signals in humans making them prime targets for the development of new analgesics. Spider venoms are a rich source of peptide modulators useful to study ion channel structure and function. Here we describe β/δ-TRTX-Pre1a, a 35-residue tarantula peptide that selectively interacts with neuronal NaV channels inhibiting peak current of hNaV1.1, rNaV1.2, hNaV1.6, and hNaV1.7 while concurrently inhibiting fast inactivation of hNaV1.1 and rNaV1.3. The DII and DIV S3-S4 loops of NaV channel voltage sensors are important for the interaction of Pre1a with NaV channels but cannot account for its unique subtype selectivity. Through analysis of the binding regions we ascertained that the variability of the S1-S2 loops between NaV channels contributes substantially to the selectivity profile observed for Pre1a, particularly with regards to fast inactivation. A serine residue on the DIV S2 helix was found to be sufficient to explain Pre1a’s potent and selective inhibitory effect on the fast inactivation process of NaV1.1 and 1.3. This work highlights that interactions with both S1-S2 and S3-S4 of NaV channels may be necessary for functional modulation, and that targeting the diverse S1-S2 region within voltage-sensing domains provides an avenue to develop subtype selective tools.https://doi.org/10.1038/s41598-017-01129-0
spellingShingle Joshua S. Wingerd
Christine A. Mozar
Christine A. Ussing
Swetha S. Murali
Yanni K.-Y. Chin
Ben Cristofori-Armstrong
Thomas Durek
John Gilchrist
Christopher W. Vaughan
Frank Bosmans
David J. Adams
Richard J. Lewis
Paul F. Alewood
Mehdi Mobli
Macdonald J. Christie
Lachlan D. Rash
The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity
Scientific Reports
title The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity
title_full The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity
title_fullStr The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity
title_full_unstemmed The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity
title_short The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity
title_sort tarantula toxin β δ trtx pre1a highlights the importance of the s1 s2 voltage sensor region for sodium channel subtype selectivity
url https://doi.org/10.1038/s41598-017-01129-0
work_keys_str_mv AT joshuaswingerd thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT christineamozar thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT christineaussing thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT swethasmurali thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT yannikychin thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT bencristoforiarmstrong thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT thomasdurek thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT johngilchrist thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT christopherwvaughan thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT frankbosmans thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT davidjadams thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT richardjlewis thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT paulfalewood thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT mehdimobli thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT macdonaldjchristie thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT lachlandrash thetarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT joshuaswingerd tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT christineamozar tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT christineaussing tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT swethasmurali tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT yannikychin tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT bencristoforiarmstrong tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT thomasdurek tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT johngilchrist tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT christopherwvaughan tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT frankbosmans tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT davidjadams tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT richardjlewis tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT paulfalewood tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT mehdimobli tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT macdonaldjchristie tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity
AT lachlandrash tarantulatoxinbdtrtxpre1ahighlightstheimportanceofthes1s2voltagesensorregionforsodiumchannelsubtypeselectivity