Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks
Abstract In cognitive radio (CR) ad-hoc network, the characteristics of the frequency resources that vary with the time and geographical location need to be considered in order to efficiently use them. Environmental statistics, such as an available transmission opportunity and data rate for each cha...
المؤلفون الرئيسيون: | Sung-Jeen Jang, Chul-Hee Han, Kwang-Eog Lee, Sang-Jo Yoo |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
SpringerOpen
2019-05-01
|
سلاسل: | EURASIP Journal on Wireless Communications and Networking |
الموضوعات: | |
الوصول للمادة أونلاين: | http://link.springer.com/article/10.1186/s13638-019-1433-1 |
مواد مشابهة
-
Q-Learning Based Multi-Objective Clustering Algorithm for Cognitive Radio Ad Hoc Networks
حسب: Md Arman Hossen, وآخرون
منشور في: (2019-01-01) -
Mobilized ad-hoc networks: A reinforcement learning approach
حسب: Chang, Yu-Han, وآخرون
منشور في: (2005) -
Mobilized ad-hoc networks: A reinforcement learning approach
حسب: Chang, Yu-Han, وآخرون
منشور في: (2004) -
Reinforcement Learning Environment for Advanced Vehicular Ad Hoc Networks Communication Systems
حسب: Lincoln Herbert Teixeira, وآخرون
منشور في: (2022-06-01) -
Unified spectrum handoff in cognitive radio mobile ad hoc networks /
حسب: Samad Nejatian, 1981-, author 580992, وآخرون
منشور في: (2014)