Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks
Abstract In cognitive radio (CR) ad-hoc network, the characteristics of the frequency resources that vary with the time and geographical location need to be considered in order to efficiently use them. Environmental statistics, such as an available transmission opportunity and data rate for each cha...
Hlavní autoři: | Sung-Jeen Jang, Chul-Hee Han, Kwang-Eog Lee, Sang-Jo Yoo |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
SpringerOpen
2019-05-01
|
Edice: | EURASIP Journal on Wireless Communications and Networking |
Témata: | |
On-line přístup: | http://link.springer.com/article/10.1186/s13638-019-1433-1 |
Podobné jednotky
-
Q-Learning Based Multi-Objective Clustering Algorithm for Cognitive Radio Ad Hoc Networks
Autor: Md Arman Hossen, a další
Vydáno: (2019-01-01) -
Mobilized ad-hoc networks: A reinforcement learning approach
Autor: Chang, Yu-Han, a další
Vydáno: (2005) -
Mobilized ad-hoc networks: A reinforcement learning approach
Autor: Chang, Yu-Han, a další
Vydáno: (2004) -
Reinforcement Learning Environment for Advanced Vehicular Ad Hoc Networks Communication Systems
Autor: Lincoln Herbert Teixeira, a další
Vydáno: (2022-06-01) -
Unified spectrum handoff in cognitive radio mobile ad hoc networks /
Autor: Samad Nejatian, 1981-, author 580992, a další
Vydáno: (2014)